Open Access
Issue
E3S Web Conf.
Volume 411, 2023
VI International Conference on Actual Problems of the Energy Complex and Environmental Protection (APEC-VI-2023)
Article Number 02015
Number of page(s) 8
Section Ecology, Environmental Protection and Conservation of Biological Diversity
DOI https://doi.org/10.1051/e3sconf/202341102015
Published online 10 August 2023
  1. M. Materac, A. Wyrwicka, Sobiecka El″bieta Phytoremediation techniques in wastewater treatment, Environmental biotechnology, 11, 1, 10–13 (2015) [CrossRef] [Google Scholar]
  2. R. Yuliasni, S.B. Kurniawan, B. Marlena, M.R. Hidayat, A. Kadier, P.C. Ma, M.F. Imron, Recent Progress of Phytoremediation-Based Technologies for Industrial Wastewater Treatment. Journal of Ecological Engineering, 24, 2, 208–220 (2023) [CrossRef] [Google Scholar]
  3. Harman Gary, Khadka Ram, Doni Febri, Uphoff Norman, Benefits to Plant Health and Productivity From Enhancing Plant Microbial Symbionts, Front. Plant Sci., 12 April 2021 Sec. Plant Pathogen Interactions, 11 (2020) [Google Scholar]
  4. Averlane Vieira da Silva, Mayanne Karla da Silva, Emanuelly Beatriz Tenório Sampaio, Luiz Fernando Romanholo Ferreira, Michel Rodrigo Zambrano Passarini, Valéria Maia de Oliveira, Luiz Henrique Rosa, Alysson Wagner Fernandes Duarte, Chapter 4 - Benefits of plant growth-promoting symbiotic microbes in climate change era, Editor(s): Ajay Kumar, Joginder Singh, Luiz Fernando Romanholo Ferreira, Microbiome Under Changing Climate, Woodhead Publishing, 85–113 (2022) [Google Scholar]
  5. E. Harman Gary, Uphoff Norman, Symbiotic Root-Endophytic Soil Microbes Improve Crop Productivity and Provide Environmental Benefits, Scientifica, 25, 9106395 (2019) [Google Scholar]
  6. G. Berg, M. Schweitzer, A. Abdelfattah, Missing symbionts - emerging pathogens? Microbiome management for sustainable agriculture, Symbiosis, 89, 163–171 (2023) [Google Scholar]
  7. Yao Liu, Guandi He, Tengbing He, Muhammad Saleem, Signaling and Detoxification Strategies in Plant-Microbes Symbiosis under Heavy Metal Stress: A Mechanistic Understanding, Microorganisms, 11, 1, 69 (2023) [Google Scholar]
  8. Jianwu Wang, Yuannan Long, Guanlong Yu, Guoliang Wang, Zhenyu Zhou, Peiyuan Li, Yameng Zhang, Kai Yang, Shitao Wang, A Review on Microorganisms in Constructed Wetlands for Typical Pollutant Removal: Species, Function, and Diversity, Front. Microbiol., 05 April 2022 Sec. Microbiotechnology, 13 (2022) [Google Scholar]
  9. C. Li, K. Zhou, W. Qin, C. Tian, M. Qi, X. Yan, A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment. Contamination: Int. J., 28, 4, 380–394 (2019) [CrossRef] [Google Scholar]
  10. I.E. Mejias Carpio, A. Ansari, D.F. Rodrigues, Relationship of biodiversity with heavy metal tolerance and sorption capacity: a meta-analysis approach, Environ. Sci. Technol., 52, 1, 184–194 (2018) [CrossRef] [PubMed] [Google Scholar]
  11. Nicoletta Rascio, Flavia Navari-Izzo, Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?, Plant Science, 180, 2, 169–181 (2011) [CrossRef] [PubMed] [Google Scholar]
  12. G.L. Sun, E.E. Reynolds, A.M. Belcher, Designing yeast as plant-like hyperaccumulators for heavy metals. Nat Commun, 10, 5080 (2019) [CrossRef] [PubMed] [Google Scholar]
  13. R.D. Reeves, A.J.M. Baker, T. Jaffré, P.D. Erskine, G. Echevarria, van A. der Ent, A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol, 218, 407–411 (2018) [CrossRef] [PubMed] [Google Scholar]
  14. S. Rezania, J. Park, P.F. Rupani, N. Darajeh, X. Xu, R. Shahrokhishahraki, Phytoremediation potential and control of Phragmites australis as a green phytomass: an overview. Environ Sci Pollut Res Int., 26, 8, 7428–7441 (2019) [CrossRef] [PubMed] [Google Scholar]
  15. T. Sricoth, W. Meeinkuirt, J. Pichtel, Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel, Environ Sci Pollut Res, 25, 5344–5358 (2018) [CrossRef] [PubMed] [Google Scholar]
  16. Y. Lei, L. Carlucci, H. Rijnaarts, A. Langenhoff, Phytoremediation of micropollutants by Phragmites australis, Typha angustifolia, and Juncus effuses. Int J Phytoremediation, 25, 1, 82–88 (2023) [CrossRef] [PubMed] [Google Scholar]
  17. Hamed Haghnazar, Kourosh Sabbagh, Karen H. Johannesson, Mojtaba Pourakbar, Ehsan Aghayani, Phytoremediation capability of Typha latifolia L. to uptake sediment toxic elements in the largest coastal wetland of the Persian Gulf, Marine Pollution Bulletin, 188, 114699 (2023) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.