Open Access
Issue
E3S Web Conf.
Volume 411, 2023
VI International Conference on Actual Problems of the Energy Complex and Environmental Protection (APEC-VI-2023)
Article Number 02043
Number of page(s) 10
Section Ecology, Environmental Protection and Conservation of Biological Diversity
DOI https://doi.org/10.1051/e3sconf/202341102043
Published online 10 August 2023
  1. D. Abishev, Material support: Ecologically clean water is the main factor of health, Search, 150 (2016) [Google Scholar]
  2. A. Samakova, The main problem of Lake Balkhash is poor water quality, http://online.zakon.kz [Google Scholar]
  3. Problems of the Ili-Balkhash basin, http://www.km.ru [Google Scholar]
  4. Information report: "Monitoring of the state of the environment in the Balkhash Lake basin" for 2014, Astana, 30 (2015) [Google Scholar]
  5. A.I. Minakov, Vertebrate fauna "SNNP "Buiratau", Current state of biodiversity of the Charyn State Natural Park and adjacent territories: Proceedings of the Intern. scientific- practical conf. (Sep 19-20, 2014), Almaty, 107–111 (2014) [Google Scholar]
  6. T.Ya. Ashikhmina, Environmental monitoring (Academic project, Moscow, 2008) [Google Scholar]
  7. A.Z. Vartanov, A.D. Ruban, V.L. Shkuratnik, Methods and devices for monitoring the environment and environmental monitoring (Infra-Engineering, Vologda, 2010) [Google Scholar]
  8. E.V. Shanina, E.V. Shanina, Measures for the ecologization of the water treatment process at confectionery enterprises, Epoch of Science, 2, 19 (2015) [Google Scholar]
  9. N.I. Shvets, Comparative analysis of some methods of wastewater treatment of food enterprises, Bulletin of the State Agrarian University of the Northern Trans-Urals, 2, 101–106 (2017) [Google Scholar]
  10. Transboundary pollution of the Itrysh River, https://nsportal.ru/ap/library/drugoe [Google Scholar]
  11. T. Kakenov, Unified State Monitoring System for the Environment and Natural Resources, 135 (2018) [Google Scholar]
  12. E. Yu. Tyumentseva, V.L. Shtabnova, Quality control of the water management complex as a contribution to ensuring the environmental safety of the city of Omsk, Bulletin of the Perm National Research Polytechnic University, Applied Ecology, Urbanistics, 2, 22, 79–95 (2016) [Google Scholar]
  13. E. Messner, M. Fediuk, P. Swatek, S. Scheidl, F.M. Smolle-Juttner, H. Olschewski, F. Pernkopf, Multi-channel lung sound classification with convolutional recurrent neural networks, Computers in Biology and Medicine, 122, 103831 (2020) [CrossRef] [PubMed] [Google Scholar]
  14. L. Youling, A calibration method of computer vision system based on dualattention mechanism, Image and Vision Computing, 103, 104039 (2020) [CrossRef] [Google Scholar]
  15. J.B. Palmerston, Y. Zhou, H.M. Chan, Comparing biological and artificial vision systems: Network measures of functional connectivity, Neuroscience Letters, 739, 135407 (2020) [CrossRef] [PubMed] [Google Scholar]
  16. S.H.Sh. Basha, Sh.R. Dubey, V. Pulabaigari, S. Mukherjee, Impact of fully connected layers on performance of convolutional neural networks for image classification, Neurocomputing, 378, 112–119 (2020) [CrossRef] [Google Scholar]
  17. K. Shuang, Y. Tan, Zh. Cai, Y. Sun, Natural language modeling with syntactic structure dependency, Information Sciences, 523, 220–233 (2020) [CrossRef] [Google Scholar]
  18. B. Chandra, P. Paul Varghese, Moving towards efficient decision tree construction, Information Sciences, 179, 8, 1059–1069 (2009) [CrossRef] [Google Scholar]
  19. F. Wang, Q. Wang, F. Nie, W. Yu, R. Wang, Efficient tree classifiers for large scale datasets, Neurocomputing, 284, 70–79 (2018) [CrossRef] [Google Scholar]
  20. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 775 (2016) [Google Scholar]
  21. N. Egamberdiev, D. Mukhamedieva, U. Khasanov, Presentation of preferences in multi-criterional tasks of decision-making, Journal of Physics: Conference Series, 1441, 1, 012137 (2020) [CrossRef] [Google Scholar]
  22. D.T. Muhamediyeva, Fuzzy cultural algorithm for solving optimization problems, Journal of Physics: Conference Series, 1441, 1, 012152 (2020) [CrossRef] [Google Scholar]
  23. D. Sotvoldiev, D.T. Muhamediyeva, Z. Juraev, Deep learning neural networks in fuzzy modeling, Journal of Physics: Conference Series, 1441, 1, 012171 (2020) [CrossRef] [Google Scholar]
  24. D.T. Muhamediyeva, N.A. Niyozmatova, Approaches to solving the problem of fuzzy parametric programming in weakly structured objects, Journal of Physics: Conference Series, 1260, 10, 102011 (2019) [CrossRef] [Google Scholar]
  25. H.A. Primova, D.T. Mukhamedieva, L. Safarova, Application of Algorithm of Fuzzy Rule Conclusions in Determination of Animal's Diseases, Journal of Physics: Conference Series, 2224, 1, 012007 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.