Open Access
E3S Web Conf.
Volume 412, 2023
International Conference on Innovation in Modern Applied Science, Environment, Energy and Earth Studies (ICIES’11 2023)
Article Number 01053
Number of page(s) 17
Published online 17 August 2023
  1. Ahmad, M., & Rathore, A. P. (2021). Application of Artificial Intelligence for Energy Efficiency in Smart Grid: A Comprehensive Review. IEEE Access, 9, 15574-15592. doi: 10.1109/ACCESS.2021.3052681 [Google Scholar]
  2. AI4Good Foundation. (2021). Our Vision and Mission. [Google Scholar]
  3. Arora, S., Ge, R., Neyshabur, B., & Zhang, Y. (2019). Stronger generalization bounds for deep nets via a compression approach. Proceedings of the 36th International Conference on Machine Learning, 373-382. [Google Scholar]
  4. Bengio, Y., Goodfellow, I., & Courville, A. (2017). Deep Learning. Nature, 521 (7553), 436-444. [Google Scholar]
  5. Boer, H., Corbett, C. J., Fliedner, G., & Laux, C. (2020). Lean operations : Can there be too much of a good thing? Journal of Operations Management, 66(12), 124-139. [Google Scholar]
  6. Brynjolfsson, E., & McAfee, A. (2017). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company. [Google Scholar]
  7. Bryson, J. J. (2018). Responsible AI and AI for good. In AI Ethics (pp. 225-237). Springer. [Google Scholar]
  8. Cai, M., Huang, C. D., Wang, C., & Dai, X. (2020). Energy efficiency in the era of artificial intelligence: A review. Energy and AI, 3, 100026. [Google Scholar]
  9. Chatha, K. A., Abbas, A. I., Khan, A. N., & Niaz, T. I. (2020). Artificial intelligence for sustainable manufacturing: State of the art, challenges, and opportunities. Journal of Cleaner Production, 123639. [Google Scholar]
  10. Deloitte. (2021). Industry 4.0 and manufacturing ecosystems: Exploring the world of connected enterprises. [Google Scholar]
  11. Drucker, P. F. (1999). Management Challenges for the 21st Century. Harper Business. [Google Scholar]
  12. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through awareness. In Proceedings of the 3rd innovations in theoretical computer science conference (pp. 214-226). [Google Scholar]
  13. Elia, G., Miranda, S., & Sorrentino, M. (2021). The role of digital technologies for sustainable energy management in smart cities. Journal of Cleaner Production, 315, 128366. [Google Scholar]
  14. El-Khoury, J., Ribeiro, P., & Engwall, M. (2020). Digital Lean Manufacturing: The Effects of Industry 4.0 on Lean Production Systems. In Proceedings of the International Conference on Computers and Industrial Engineering (pp. 214-219). [Google Scholar]
  15. European Commission. (2018). Data protection in the EU institutions and bodies. [Google Scholar]
  16. European Commission. (2020). Artificial intelligence : Questions and Answers. Retrieved from [Google Scholar]
  17. European Group on Ethics in Science and New Technologies. (2019). Ethics of AI: A European approach. [Google Scholar]
  18. Faisal, M. N., & Banwet, D. K. (2019). A systematic review of lean and digital transformation: What’s the impact? Computers & Industrial Engineering, 135, 276-294. [Google Scholar]
  19. Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Valcke, P. (2018). AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 28(4), 689-707. [CrossRef] [PubMed] [Google Scholar]
  20. Gao, J., Chen, J., Zhang, Y., He, Y., & Wang, Y. (2020). Energy-saving effects of artificial intelligence algorithms in industrial systems. Applied Energy, 260, 114274. [Google Scholar]
  21. Garg, S., Shukla, A., & Singh, R. K. (2021). Artificial intelligence in operations and supply chain management: A review. International Journal of Production Research, 1-24. [Google Scholar]
  22. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. [Google Scholar]
  23. Google DeepMind. (n.d.). DeepMind Energy. Retrieved from [Google Scholar]
  24. Gunasekaran, A., & Ngai, E. W. (2017). The future of enterprise resource planning in the digital era. Technological Forecasting and Social Change, 129, 87-97. [Google Scholar]
  25. Hao, P., Tang, W., He, X., Liu, F., & Li, L. (2021). A survey on artificial intelligence techniques for smart grid: Applications, algorithms, and challenges. IEEE Access, 9, 46139-46162. [Google Scholar]
  26. IBM. (n.d.). Green Horizon Project. [Google Scholar]
  27. IEA. (2020). The Future of Cooling Opportunities for Energy Efficient Air Conditioning. [Google Scholar]
  28. IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems. (2022). Ethically Aligned Design: A Vision for Prioritizing Human Well-being with Artificial Intelligence and Autonomous Systems. [Google Scholar]
  29. Ivanova, M., Leylak, S., & Steen-Olsen, K. (2021). The environmental impact of management practices: Evaluating the carbon footprint of lean management. Journal of Cleaner Production, 278, 123841. [Google Scholar]
  30. Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. [CrossRef] [Google Scholar]
  31. Jones, D. T., & Womack, J. P. (2003). Lean Thinking: Banish Waste and Create Wealth in Your Corporation (2nd ed.). Free Press. [Google Scholar]
  32. Jurafsky, D., & Martin, J. H. (2020). Speech and Language Processing (3rd ed.). Pearson. [Google Scholar]
  33. Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group. Forschungsunion, Acatech, National Academy of Science and Engineering. [Google Scholar]
  34. Kagermann, H., Lukas, W., & Wahlster, W. (2013). Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen Revolution. VDI nachrichten. [Google Scholar]
  35. Koomey, J. G. (2021). Growth in data center electricity use 2010 to 2020: A contribution to the global energy assessment. Renewable and Sustainable Energy Reviews, 148, 111179. [Google Scholar]
  36. Koontz, H., Weihrich, H., & Cannice, M. V. (2014). Management: A Global Perspective (14th ed.). McGraw-Hill. [Google Scholar]
  37. Laengle, S., & Deuse, J. (2020). Digital Lean: Taking Lean Systems and Tools into the Digital Era. Springer. [Google Scholar]
  38. Laudon, K. C., & Laudon, J. P. (2019). Management Information Systems: Managing the Digital Firm (16th ed.). Pearson. [Google Scholar]
  39. Liker, J. K. (2004). The Toyota Way: 14 Management Principles from the World’s Greatest Manufacturer. McGraw-Hill. [Google Scholar]
  40. Liker, J. K., & Franz, J. K. (2016). The Toyota Way to Continuous Improvement: Linking Strategy and Operational Excellence to Achieve Superior Performance. McGraw-Hill Education. [Google Scholar]
  41. Liu, Y., You, Y., Yan, X., & Wang, Y. (2019). Intelligent solid waste management for sustainable cities: A review. Resources, Conservation and Recycling, 144, 235-249. [Google Scholar]
  42. Manos, A., & Vincent, B. (2019). The digital lean enterprise: Using the internet of things (IoT) to optimize lean management. CRC Press. [Google Scholar]
  43. McCorduck, P. (2004). Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence. A K Peters/CRC Press. [Google Scholar]
  44. Microsoft. (n.d.). AI for Earth. Retrieved from [Google Scholar]
  45. MIT. (n.d.). Optimizing Urban Deliveries with Artificial Intelligence. Retrieved from [Google Scholar]
  46. Nah, F. F. (2019). Enterprise Resource Planning Systems: Systems, Life Cycle, Electronic Business, and Risk. In The Handbook of Management Information Systems (pp. 393-434). Springer. [Google Scholar]
  47. Nguyen, T. H., Nguyen, T. H., Do, Q. H., Nguyen, T. T., & Nguyen, Q. T. (2019). Artificial intelligence techniques for carbon emissions reduction in smart cities: A comprehensive survey. Sustainable Cities and Society, 49, 101600. [CrossRef] [Google Scholar]
  48. OECD. (2019). AI Principles. Retrieved from [Google Scholar]
  49. Ohno, T. (1988). Toyota Production System: Beyond Large-Scale Production. Productivity Press. [Google Scholar]
  50. O’Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Broadway Books. [Google Scholar]
  51. PG&E. (n.d.). Artificial Intelligence for Grid Optimization. Retrieved from [Google Scholar]
  52. Poppendieck, M., & Poppendieck, T. (2012). Lean Software Development: An Agile Toolkit. Addison-Wesley Professional. [Google Scholar]
  53. PwC. (2018). AI Skills in the UK: The supply and demand for talent. [Google Scholar]
  54. PwC. (2020). Industry 4.0: Building the digital enterprise. Retrieved from [Google Scholar]
  55. Radnor, Z., & Johnston, R. (2012). Lean innovation: Exploring the production of knowledge within a digital innovation project. Journal of Operations Management, 30(6), 479-491. [Google Scholar]
  56. Radnor, Z., & Johnston, R. (2018). Lean in healthcare: The unfilled promise? Social Science & Medicine, 207, 111-120. [Google Scholar]
  57. RecycleSmart. (n.d.). Artificial Intelligence Waste Collection. Retrieved from [Google Scholar]
  58. Robbins, S. P., Coulter, M., & DeCenzo, D. A. (2017). Fundamentals of Management (11th ed.). Pearson. [Google Scholar]
  59. Schneider, C. (2020). AI cybersecurity challenges and risks: A primer. European Parliamentary Research Service. Retrieved from [Google Scholar]
  60. Schwab, K. (2020). The fourth industrial revolution. Currency. [Google Scholar]
  61. Shah, R., & Ward, P. T. (2007). Defining and developing measures of lean production. Journal of Operations Management, 25(4), 785-805. [CrossRef] [Google Scholar]
  62. Sharma, R., & Sharma, A. (2021). Digital Lean Manufacturing: A Review of Industry 4.0 Tools and Techniques. In Proceedings of the International Conference on Industry 4.0 and Artificial Intelligence (pp. 583-590). [Google Scholar]
  63. Shingo, S. (1989). A Study of the Toyota Production System: From an Industrial Engineering Viewpoint. Productivity Press. [Google Scholar]
  64. Siciliano, B., & Khatib, O. (Eds.). (2016). Springer Handbook of Robotics (2nd ed.). Springer. [CrossRef] [Google Scholar]
  65. Siemens. (n.d.). AI-driven Building Management Systems. [Google Scholar]
  66. Siemens. (n.d.). Reducing Energy Consumption in Buildings Using Artificial Intelligence. [Google Scholar]
  67. Singh, R. K., Mishra, A., & Gupta, S. K. (2020). Digital Lean Manufacturing: An empirical study of adoption and impact in Indian manufacturing organizations. Journal of Manufacturing Systems, 55, 275-286. [Google Scholar]
  68. Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 3645-3650. [Google Scholar]
  69. Suhail, M., Nawaz, M. I., Mahmood, A., & Shafi, K. (2021). Artificial Intelligence and Sustainability: A Systematic Literature Review. IEEE Access, 9, 50521-50534. [Google Scholar]
  70. Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press. [Google Scholar]
  71. Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer. [Google Scholar]
  72. Thomson, S. (2019). AI for Earth: How machine learning is helping us find environmental solutions. Microsoft AI Blog. [Google Scholar]
  73. Womack, J. P., Jones, D. T., & Roos, D. (1990). The Machine That Changed the World: The Story of Lean Production. Free Press. [Google Scholar]
  74. World Economic Forum. (2020). The Future of Jobs Report 2020. Retrieved from [Google Scholar]
  75. Wren, D. A., Bedeian, A. G., & Breeze, J. D. (2019). The History of Management Thought (8th ed.). Wiley. [Google Scholar]
  76. Zhang, S., Ren, T., Zhang, Y., & Xie, X. (2021). A Review of Artificial Intelligence for Energy Saving and Emission Reduction in Manufacturing Systems. Energies, 14(11), 3056. [CrossRef] [Google Scholar]
  77. Zhang, Y., Hu, F., Zhang, J., Ma, X., Li, W., & Liu, Y. (2020). Artificial intelligence in environmental monitoring: Progress, challenges, and perspectives. Environmental Science and Pollution Research, 27(14), 15967-15987. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.