Open Access
Issue
E3S Web Conf.
Volume 412, 2023
International Conference on Innovation in Modern Applied Science, Environment, Energy and Earth Studies (ICIES’11 2023)
Article Number 01069
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202341201069
Published online 17 August 2023
  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. [Google Scholar]
  2. Aghera, R., Chilana, S., Garg, V., & Reddy, R. (2021). A Deep Learning Technique using Low Sampling rate for residential Non Intrusive Load Monitoring. [Google Scholar]
  3. Azari, E., & Vrudhula, S. (2019). ELSA: A Throughput-Optimized Design of an LSTM Accelerator for Energy-Constrained Devices. [Google Scholar]
  4. Canton, H. (2021). Bank for international settlements—BIS. In The Europa Directory of International Organizations 2021 (pp. 468-470). Routledge. [Google Scholar]
  5. Chen, W., Xu, H., Jia, L., & Gao, Y. (2021). Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants. International Journal of Forecasting, 37(1), 28-43. [CrossRef] [Google Scholar]
  6. Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural computation, 12(10), 2451-2471. [CrossRef] [PubMed] [Google Scholar]
  7. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (pp. 1-7). Cambridge, MA: MIT Press. [Google Scholar]
  8. Haq, A. U., Zeb, A., Lei, Z., & Zhang, D. (2021). Forecasting daily stock trend using multi-filter feature selection and deep learning. Expert Systems with Applications, 168, 114444. [CrossRef] [Google Scholar]
  9. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. [CrossRef] [Google Scholar]
  10. Hussain, A., Amin, M., & Al-Fuqaha, A. (2019). A review of deep learning techniques for time-series forecasting. Journal of Ambient Intelligence and Humanized Computing, 10(6), 7955-7980. [Google Scholar]
  11. Moghar, A., & Hamiche, M. (2020). Stock market prediction using LSTM recurrent neural network. Procedia Computer Science, 170, 1168-1173. [CrossRef] [Google Scholar]
  12. Muli, C., Park, S., & Liu, M. (2022). A Comparative Study on Energy Consumption Models for Drones. [Google Scholar]
  13. Nabipour, M., Nayyeri, P., Jabani, H., Shahab, S., & Mosavi, A. (2020). Predicting stock market trends using machine learning and deep learning algorithms via continuous and binary data; a comparative analysis. IEEE Access, 8, 150199-150212. [Google Scholar]
  14. Oliveira, N., Sousa, N., & Praça, I. (2022). Deep Learning for Short-term Instant Energy Consumption Forecasting in the Manufacturing Sector. [Google Scholar]
  15. Saoud, L. S., AlMarzouqi, H., & Hussein, R. (2022). Cascaded Deep Hybrid Models for Multistep Household Energy Consumption Forecasting. [Google Scholar]
  16. Saoud, S. E., Halim, W. K., & Kashef, R. (2022). Short-term Prediction of Household Electricity Consumption Using Customized LSTM and GRU Models. [Google Scholar]
  17. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117. [CrossRef] [PubMed] [Google Scholar]
  18. Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied soft computing, 90, 106181. [CrossRef] [Google Scholar]
  19. Zhao, Z., Lou, Y., Chen, Y., Lin, H., Li, R., & Yu, G. (2019). Prediction of interfacial interactions related with membrane fouling in a membrane bioreactor based on radial basis function artificial neural network (ANN). Bioresource technology, 282, 262-268. [CrossRef] [PubMed] [Google Scholar]
  20. Zhou, T. (2020). Forex trend forecasting based on long short-term memory and its variations with hybrid activation functions (Doctoral dissertation, Brunel University London). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.