Open Access
Issue
E3S Web Conf.
Volume 412, 2023
International Conference on Innovation in Modern Applied Science, Environment, Energy and Earth Studies (ICIES’11 2023)
Article Number 01096
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202341201096
Published online 17 August 2023
  1. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. In Proceedings of the IEEE, 1998, pp. 2278–2324. [CrossRef] [Google Scholar]
  2. J. Deng, J. W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In International Journal of Computer Vision, vol 115 (3), pp. 211-252. [Google Scholar]
  3. K. He, X. Zhang, S. Ren, and J. Sun. Deep residuallearning for image recognition. In 2016 Proceedingsof the IEEE conference on computer vision and pattern recognition, pp. 770-778. [Google Scholar]
  4. K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv :1409.1556, 2014. [Google Scholar]
  5. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.C. Chen. MobileNetV2 : Inverted Residuals and Linear Bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4510-4520). IEEE. [Google Scholar]
  6. Stallkampa J, Schlipsing M, Salmena J, Igel C. Man vs. computer:Benchmarking machine learning algorithms for traffic sign recognition. Neural Networks Elsevier. 2012 ; 32 : 323-332. [CrossRef] [Google Scholar]
  7. Kiran G, Prabhu LV, Abdu-Rahiman V, Rajeev K. Traffic sign detection and pattern recognition using support vector machine. 7thInter. Conf. On Advances in Pattern Recognition. ICAPR’09, Kolkata. India. 2009. [Google Scholar]
  8. L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.5–32, 2001. [CrossRef] [Google Scholar]
  9. Kingma DP, Ba J. Adam : A method for stochastic optimization. 3rd Inter. Conf. for Learning Representations. San 503 Diego, USA, 2015. [Google Scholar]
  10. Chen L, Li Q, Li M, Mao Q. Traffic sign detection and recognition for intelligent vehicle. IEEE Intelligent Vehicles Symposium. Baden-Baden, Germany. June 2011. [Google Scholar]
  11. Zhu Z, Liang D, Zhang S, Huang X, Li B, Hu S. Traffic-sign detection and classification in the wild, IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. June 2016. [Google Scholar]
  12. Farag W. Cloning safe driving behavior for self-driving cars using convolutional neural networks. Recent Patents on Computer Science. 2019; 12(2):doi: 10.2174/2213248375911666181106160002. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.