Open Access
Issue |
E3S Web Conf.
Volume 412, 2023
International Conference on Innovation in Modern Applied Science, Environment, Energy and Earth Studies (ICIES’11 2023)
|
|
---|---|---|
Article Number | 01106 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/202341201106 | |
Published online | 17 August 2023 |
- Seresht, N. A., & Azmi, R. (2015). MAIS-IDS: a distributed intrusion detection system using multi-agent AIS approach. Engineering Applications of Artificial Intelligence, 35, 286-298. [Google Scholar]
- Gaur, M. S., Sharma, M., & Pant, B. (2015). Trusted and secure clustering in mobile pervasive environment. Human-centric Computing and Information Sciences, 5(32), 19. [CrossRef] [Google Scholar]
- D. Fraunholz, S. D. Anton, C. Lipps, D. Reti, D. Krohmer, F. Pohl, M. Tammen, and H. D. Schotten, “Demystifying Deception Technology: A Survey,” 2018. [Google Scholar]
- C. Ieracitano, A. Adeel, M. Gogate, K. Dashtipour, F. C. Morabito, H. Larijani, A. Raza, and A. Hussain, “Statistical analysis driven optimized deep learning system for intrusion detection,” in International conferenceon brain inspired cognitive systems. Springer, 2018, pp. 759–769. [Google Scholar]
- K. Jiang, W. Wang, A. Wang, and H. Wu, “Network intrusion detection combined hybrid sampling with deep hierarchical network,” IEEE Access, vol. 8, pp. 32 464–32 476, 2020. [Google Scholar]
- P. Muhuri, P. Chatterjee, X. Yuan, K. Roy, and A. Esterline, “Using a long short-term memory recurrent neural network (lstm-rnn) to classify network attacks,” Information, vol. 11, p. 243, 05 2020. [CrossRef] [Google Scholar]
- A. Andalib and V. T. Vakili, “An autonomous intrusion detection system using an ensemble of advanced learners,” in 2020 28th Iranian Conference on Electrical Engineering (ICEE), 2020, pp. 1–5. [Google Scholar]
- W. Xu, J. Jang-Jaccard, A. Singh, Y. Wei, and F. Sabrina, “Improving performance of autoencoder-based network anomaly detection on nsl-kdd dataset,” IEEE Access, vol. 9, pp. 140136–140146, 2021. [CrossRef] [Google Scholar]
- J. Yoo, B. Min, S. Kim, D. Shin, and D. Shin, “Study on network intrusion detection method using discrete preprocessing method and convolution neural network,” IEEE Access, vol. 9, pp. 142348–142361, 2021. [CrossRef] [Google Scholar]
- L. Liu, P. Wang, J. Lin, and L. Liu, “Intrusion detection of imbalanced network traffic based on machine learning and deep learning,” Ieee Access, vol. 9, pp. 7550–7563, 2020. [Google Scholar]
- A. Fatani, M. Abd Elaziz, A. Dahou, M. A. Al-Qaness, and S. Lu, “Iot intrusion detection system using deep learning and enhanced transient search optimization,” IEEE Access, vol. 9, pp. 123448–123464, 2021. [CrossRef] [Google Scholar]
- M.-T. Kao, D.-Y. Sung, S.-J. Kao, and F.-M. Chang, “A novel two-stage deep learning structure for network flow anomaly detection,” Electronics, vol. 11, p. 1531, 05 2022. [CrossRef] [Google Scholar]
- M. H. Almeshekah and E. H. Spafford, “Planning and integrating deception into computer security defenses,” in Proceedings of the 2014 New Security Paradigms Workshop, 2014, pp. 127–138. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.