Open Access
Issue |
E3S Web Conf.
Volume 413, 2023
XVI International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2023”
|
|
---|---|---|
Article Number | 02024 | |
Number of page(s) | 9 | |
Section | Agricultural Engineering and Mechanization | |
DOI | https://doi.org/10.1051/e3sconf/202341302024 | |
Published online | 11 August 2023 |
- A. V. Azarov, F. K. Antonov, M. V. Golubev, A. R. Khaziev, S. A. Ushanov, “Composite 3D printing for the small size unmanned aerial vehicle structure,” Compos B Eng, 169, 157–163 (2019) doi: 10.1016/j.compositesb.2019.03.073. [CrossRef] [Google Scholar]
- Selective Morphing through Distributed Compliance with Variable Stiffness Based on Embedded Bi-Stable Structures doi: 10.3929/ethz-a-010808553. [Google Scholar]
- F. Previtali, Morphing wing based on compliant elements, doi: 10.3929/ethz-a-010546627. [Google Scholar]
- S. Vasista, L. Tong, K. C. Wong, Realization of morphing wings: A multidisciplinary challenge, J Aircr, 49(1), 11–28 (2012) doi: 10.2514/1.C031060. [CrossRef] [Google Scholar]
- U. Fasel, D. Keidel, L. Baumann, G. Cavolina, M. Eichenhofer, P. Ermanni, “Composite additive manufacturing of morphing aerospace structures,” ManufLett, 23, 85–88 (2020) doi: 10.1016/j.mfglet.2019.12.004. [Google Scholar]
- A. Concilio, I. Dimino, L. Lecce, R. Pecora, Morphing Wing Technologies: Large Commercial Aircraft and Civil Helicopters (2018) [Google Scholar]
- S. Gurumukhi, Study of various trends for morphing wing technology, Journal of Computational Methods in Sciences and Engineering, 21(3) (2021) doi: 10.3233/JCM-200046. [Google Scholar]
- D. Keidel, U. Fasel, P. Ermanni, “Concept Investigation of a Lightweight Composite Lattice Morphing Wing,” AIAA Journal, 59(6) (2021) doi: 10.2514/1.j059579. [Google Scholar]
- D. Li et al., A review of modelling and analysis of morphing wings, Progress in Aerospace Sciences, Elsevier Ltd, 100, 46–62 (2018) doi: 10.1016/j.paerosci.2018.06.002. [Google Scholar]
- N. Tsushima, T. Yokozeki, W. Su, H. Arizono, Geometrically nonlinear static aeroelastic analysis of composite morphing wing with corrugated structures, Aerosp Sci Technol, 88 (2019) doi: 10.1016/j.ast.2019.03.025. [Google Scholar]
- S. Ameduri, A. Concilio, “Morphing wings review: aims, challenges, and current open issues of a technology,” Proc Inst Mech Eng C J Mech Eng Sci (2020) doi: 10.1177/0954406220944423. [Google Scholar]
- C. Ozel, E. Ozbek, S. Ekici, “A Reviewon Applications and Effects of Morphing WingTechnologyon UAVs,” International Journal of Aviation Science and Technology, 1(1) (2020) doi: 10.23890/ijast.vm01is01.0105. [Google Scholar]
- D. A. Burdette, J. R. R. A. Martins, “Design of a transonic wing with an adaptive morphing trailing edge via aerostructural optimization,” Aerosp Sci Technol, 81, 192–203 (2018) doi: 10.1016/j.ast.2018.08.004. [CrossRef] [Google Scholar]
- B. Jenett, et al., Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures, Soft Robot, 4(1), 33–48 (2017) doi: 10.1089/soro.2016.0032. [CrossRef] [PubMed] [Google Scholar]
- Z. Lyu, J. R. R. A. Martins, Aerodynamic shape optimization of an adaptive morphing trailing-edge wing, in Journal of Aircraft, 6, 1951–1970 (2015) doi: 10.2514/1.C033116. [CrossRef] [Google Scholar]
- J. Zhang, C. Bisagni, “Buckling-driven mechanisms for twisting control in adaptive composite wings,” Aerosp Sci Technol, 118 (2021) doi: 10.1016/j.ast.2021.107006. [Google Scholar]
- A. Mukherjee, S. F. Ali, A. Arockiarajan, “Hybrid bistable composite laminates for structural assemblies: A numerical and experimental study,” Compos Struct, 260 (2021) doi: 10.1016/j.compstruct.2020.113467. [CrossRef] [Google Scholar]
- W. Hufenbach, M. Gude, L. Kroll, Design of multistable composites for application in adaptive structures [Google Scholar]
- E. R. Abrahamson, M. S. Lake, N. A. Munshi, and K. Gall, “Shape memory mechanics of an elastic memory composite resin,” JIntell Mater Syst Struct, 14(10), 623–632 (2003) doi: 10.1177/104538903036213. [CrossRef] [Google Scholar]
- Z. Kan, D. Li, T. Shen, J. Xiang, L. Zhang, Aerodynamic characteristics of morphing wing with flexible leading-edge, Chinese Journal of Aeronautics, 33(10) (2020) doi: 10.1016/j.cja.2020.03.012. [Google Scholar]
- G. Molinari, A. F. Arrieta, M. Guillaume, P. Ermanni, Aerostructural performance of distributed compliance morphing wings: Wind tunnel and flight testing, AIAA Journal, 54(12), 3859–3871 (2016) doi: 10.2514/1.J055073 [CrossRef] [Google Scholar]
- F. Previtali, A. F. Arrieta, P. Ermanni, Performance evaluation of a 3D morphing wing and comparison with a conventional wing, in 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2013) doi: 10.2514/6.2013-1514. [Google Scholar]
- E. Kosenko, V. Nelyub, V. Zorin Assessment of the stress-strain state of machine structural elements made of polymer composite materials with a hybrid matrix by numerical simulation, E3S Web of Conferences, 376, 01017 (2023) DOI: 10.1051/e3sconf/202337601017 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Yu. Dimitrienko, A. Zakharov, M. Koryakov, Simulation of energetic composite materials combustion, E3S Web of Conferences, 376, 01031 (2023) DOI: 10.1051/e3sconf/202337601031 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- I. P. Storoshuk, N. G. Pavlukovich, A. S. Borodulin, A. N. Kalinnikov, V. M. Alekseev, Thermoplastic Polyetherimides and Copolyimides for Heat-Resistant Composite Materials, AIP Conference Proceedings, 2503, 060011 (2022) DOI: 10.1063/5.0119920 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.