Open Access
Issue
E3S Web Conf.
Volume 413, 2023
XVI International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2023”
Article Number 03011
Number of page(s) 15
Section Social and Human Ecology
DOI https://doi.org/10.1051/e3sconf/202341303011
Published online 11 August 2023
  1. M. A. Saloot, D. N. Pham, Real-time Text Stream Processing: A Dynamic and Distributed NLP Pipeline, ACM International Conference Proceeding Series (2021) https://doi.org/10.1145/3459104.3459198 [Google Scholar]
  2. G. Becquin, End-to-end NLP Pipelines in Rust (2020) https://doi.org/10.18653/v1/2020.nlposs-1.4 [Google Scholar]
  3. N. Peng, F. Ferraro, M. Yu, N. Andrews, J. DeYoung, M. Thomas, M. R. Gormley, T. Wolfe, C. Harman, B. van Durme, M. Dredze, A concrete Chinese NLP pipeline. NAACL-HLT 2015 -2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Demonstrations, Proceedings (2015) https://doi.org/10.3115/v1/n15-3018 [Google Scholar]
  4. H. Noji, Y. Miyao, Jigg: A framework for an easy natural language processing pipeline. 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016 System Demonstrations (2016) https://doi.org/10.18653/v1/p16-4018 [Google Scholar]
  5. S. Vajjala, B. Majumder, A. Gupta, H. Surana, Practical Natural Language Processing. A Comprehensive Guide to Building Real-World NLP Systems, 455 (2020) [Google Scholar]
  6. E. B. Botir, X. I. Axmedova, Business Process Modeling That Distinguishes Homonymy Within Three Parts of Speechs in Uzbek Language, International conference on information science and communications technologies application, trends and opportunities (IEEE -UBMK -VII. Uluslararası Bilgisayar Bilimleri ve Mühendisliği Konferansı), Ankara (2022) [Google Scholar]
  7. B. Elov, Sh. Hamraeva, X. Axmedova, Methods for creating a morphological analyse, 14th International Conference on Intellegent Human Computer Interaction. 19-23 October, Tashkent (2022) [Google Scholar]
  8. B. Elov, Sh. Hamroyeva, D. Elova, Morfologik analizatorni yaratish usullari, O ‘zbekiston: til va madaniyat. Amaliy filologiya masalalari, 5(1), 67-87 (2022) [Google Scholar]
  9. B. R. Menliev, Sh. M. Khamroeva, Structure and units of the morphoanalyzer of the Uzbek language, Computer linguistics and vychislitelnye ontologii. Vypusk 5 (Trudy XXIV Mejdunarodnoy ob'edinennoy nauchchestsii "Internet i sovremennoe obshchestvo", IMS-2021, Sbornik nauchnyx trudov), Saint-Petersburg, University ITMO, 82 (2021) [Google Scholar]
  10. B. B. Elov, Text generation in Uzbek using N-gram language models, Computational linguistics: problems, solutions and perspectives, Collection of international scientific and practical conference. Electronic publication, ebook, Tashkent (2022) [Google Scholar]
  11. E. Soysal, J. Wang, M. Jiang, Y. Wu, S. Pakhomov, H. Liu, H. Xu, CLAMP -a toolkit for efficiently building customized clinical natural language processing pipelines, Journal of the American Medical Informatics Association, 25(3) (2018) https://doi.org/10.1093/jamia/ocx132 [Google Scholar]
  12. I. Tenney, D. Das, E. Pavlick, BERT rediscovers the classical NLP pipeline. ACL 2019 -57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (2020) https://doi.org/10.18653/v1/p19-1452 [Google Scholar]
  13. G. Attardi, DeepNL: A deep learning NLP pipeline. 1st Workshop on Vector Space Modeling for Natural Language Processing, VS 2015 at the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT (2015) https://doi.org/10.3115/v1/w15-1515 [Google Scholar]
  14. S. Koeva, N. Obreshkov, M. Yalamov, Natural language processing pipeline to annotate bulgarian legislative data. LREC 2020 -12th International Conference on Language Resources and Evaluation, Conference Proceedings (2020) [Google Scholar]
  15. W. de Vries, A. van Cranenburgh, M. Nissim, What’s so special about BERT’s layers? A closer look at the NLP pipeline in monolingual and multilingual models, Findings of the Association for Computational Linguistics Findings of ACL: EMNLP (2020) https://doi.org/10.18653/v1/2020.findings-emnlp.389 [Google Scholar]
  16. B. Elov, Tabiiy tilni qayta ishlash (nlp)da spacy modulidan foydalanish. Science and innovative development, Tashkent, 4, 41-55 (2022) [Google Scholar]
  17. Z. Y. Xusainova, NLP: tokenizatsiya, stemming, lemmatizatsiya va nutq qismlarini teglash. O‘zbek amaliy filologiyasi istiqbollari, Respublika ilmiy-amaliy konferensiya to‘plami. Elektron nashr, Toshkent: ToshDOʻTAU, 159-163 (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.