Open Access
Issue
E3S Web Conf.
Volume 413, 2023
XVI International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2023”
Article Number 04013
Number of page(s) 6
Section Green Chemistry and Sustainable Technologies
DOI https://doi.org/10.1051/e3sconf/202341304013
Published online 11 August 2023
  1. C. L. Condron, S. M. Kauzlarich, F. Gascoin, G. J. Snyder, Thermoelectric properties and microstructure of Mg3Sb2, Journal of Solid State Chemistry, 179, 2252–2257 (2006) [CrossRef] [Google Scholar]
  2. M. Tiadi, M. Battabyal, P. K. Jain, A. Chauhan, D. K. Satapathy, R. Gopalan, Enhancing the thermoelectric efficiency in p-type Mg3Sb2 via Mg site co-doping. Sustainable Energy Fuels, 16(5), 4104–4114 (2021) [CrossRef] [Google Scholar]
  3. P. Balasubramanian, M. Battabyal, R. Gopalan, Improving the oxidation resistance of thermoelectric Mg2Si leg with silica coating. Materials Letters, 312, 131599 (2022) https://doi.org/10.1016/j.matlet.2021.131599 [CrossRef] [Google Scholar]
  4. R. Farris, M. B. Maccioni, A. Filippetti, V. Fiorentini, Theory of thermoelectricity in Mg3Sb2 with an energy-and temperature-dependent relaxation time. Article in Journal of Physics Condensed Matter· November (2018) DOI: 10.1088/1361-648X/aaf364 [Google Scholar]
  5. Md. M. Rahman, A. K. M. Ashiquzzaman Shawon, Soon-Chul Ur. Effect of Excessive Antimony on the Thermoelectric and Transport Properties of Mg3Sb2 Synthesized by Controlled Melting, Pulverizing Followed by Vacuum Hot Pressing. Electronic Materials Letters, 17, 102–108 (2021) https://doi.org/10.1007/s13391-020-00251-y [CrossRef] [Google Scholar]
  6. J. Zhang, L. Song, Bo B. Iversen, Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment. npj Computational Materials, 5, 76 (2019) https://doi.org/10.1038/s41524-019-0215-y. [CrossRef] [Google Scholar]
  7. L. Huang, T. Liu, X. Mo, G. Yuan, R. Wang, H. Liu, X. Lei, Q. Zhang, Z. Ren, Thermoelectric performance improvement of p-type Mg3Sb2-based materials by Zn and Ag co-doping. Materials Today Physics, 21, 100564 (2021) https://doi.org/10.1016/j.mtphys.2021.100564 [CrossRef] [Google Scholar]
  8. B. L. Oksengendler, B. M. Abdurakhmanov, M. M. Adilov, Kh. B. Ashurov, New Aspects of Thermoelectricity: Electronic Skutterudites, J. Applied Solar Energy, 2, 37-40 (2017) [Google Scholar]
  9. B. M. Abdurakhmanov, M. M. Adilov, M. Kh. Ashurov, Kh. B. Ashurov, Sh. K. Kuchkanov, S. E. Maksimov, B. L. Oxengendler, Thermoelectric characteristics of granular semiconductors with resonant tunneling of charge carriers for the conversion of the thermal component of solar radiation, J. Applied Solar Energy, 4, 22-27 (2015) [Google Scholar]
  10. F. L. Omonboev, L. O. Olimov, B. M. Abdurakhmanov, Conductivity and Seebeck coefficient in granular silicon. The American Journal of Engineering and Technology. March 25, 28-35 (2021) Doi: https://doi.org/10.37547/tajet/Volume03Issue03-05 [Google Scholar]
  11. L. O. Olimov, I. I. Anarboev, A. Mamirov, F. L. Omonboev, M. L. Omonboeva, Patent UZ № FAP 01593 "Method of preparation of thermoelectric material" (2021) [Google Scholar]
  12. B. M. Abdurakhmanov, M. M. Adilov, M. Kh. Ashurov, and et. al., Patent Uz IAP 0561 Thermoelectric material and its preparation method. 29.06.2018. Bull., 6 [Google Scholar]
  13. L. O. Olimov, I. I. Anarboyev, Some Electrophysical Properties of Polycrystalline Silicon Obtained in a Solar Oven. Silicon, 14(8), 3817 – 3822 (2022) https://doi.org/10.1007/s12633-021-01596-1 [CrossRef] [Google Scholar]
  14. L. O. Olimov, I. I. Anarboyev, Some electrophysical properties of polycrystalline silicon obtained in a solar oven. International Journal of Physics & Mathematics, 4(1), 39-45 (2021) [Google Scholar]
  15. L. O. Olimov, I. I. Anarboyev, Microcructure of Polycrystal Silicon Heated by Sunlight. RA Journal Of Applied research, 11 November-2021, 07, 2669-2671 (2021) [Google Scholar]
  16. L. O. Olimov, B. M. Abdurakhmanov, F. L. Omonboev, The Influence of Alkali Metal Atoms on the Electrical Conductivity of Granular Silicon. International Journal of Advanced Research in Physical Science, 7(12), 7-10 (2020) [Google Scholar]
  17. L. O. Olimov, The grain boundaries of polycrystalline silicon: microwaves, charge states and p-n-junction, Autoreferaty of doctoral dissertation. (Uzbekistan) (2016) [Google Scholar]
  18. V. I. Fistula, Physics and Chemistry of Solid Stat. Metallurgy, Moscow, 2 (1995) [Google Scholar]
  19. L. O. Olimov, B. M. Abdurakhmanov, F. L. Omonboev, Some Features of the Transport of Charge Carriers in the Grain Boundaries of Polycrystalline Silicon. International Journal of Advanced Research in Physical Science, 1(6), 12-17 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.