Open Access
Issue |
E3S Web of Conf.
Volume 415, 2023
8th International Conference on Debris Flow Hazard Mitigation (DFHM8)
|
|
---|---|---|
Article Number | 03033 | |
Number of page(s) | 4 | |
Section | Monitoring, Detection and Warning | |
DOI | https://doi.org/10.1051/e3sconf/202341503033 | |
Published online | 18 August 2023 |
- K. Hutter, B. Svendsen, D. Rickenmann. Debris flow modeling: A review. Continuum. Mech. Thermodyn. 8, 1 (1994) [CrossRef] [Google Scholar]
- RM. Iverson. The physics of debris flows. Rev. Geophys. 35, 97 (1997). [Google Scholar]
- J. Huebl, G. Fiebiger. Debris-flow mitigation measures. (Debris-flow Hazards and Related Phenomena, Berlin Springer, 2007) [Google Scholar]
- S. Fuchs, K. Heiss, J. Hübl. Natural Hazards and Earth System Sciences Towards an empirical vulnerability function for use in debris flow risk assessment. Hazards. Earth. Syst. Sci. 7, 1 (2007) [Google Scholar]
- RL. Baum, JW. Godt. Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides. 7, 3 (2010) [Google Scholar]
- JW. Kean, DM. Staley, JT. Lancaster, et al. Inundation, flow dynamics, and damage in the 9 January 2018 Montecito debris-flow event, California, USA: Opportunities and challenges for post-wildfire risk assessment. Geosphere. 15, 4 (2019) [Google Scholar]
- M. Hürlimann, V. Coviello, C. Bel, et al. Debris-flow monitoring and warning: Review and examples. Earth-Science. Rev. 199 (2019) [Google Scholar]
- F. Marra, EI. Nikolopoulos, JD. Creutin Space– time organization of debris flows-triggering rainfall and its effect on the identification of the rainfall threshold relationship. J. Hydrol. 541 (2016) [Google Scholar]
- C. Tang, J. Zhu, WL. Li, et al. Rainfall-triggered debris flows following the Wenchuan earthquake. Bull. Eng. Geol. Environ. 68, 2 (2009) [Google Scholar]
- BW. McArdell, P. Bartelt, J. Kowalski. Field observations of basal forces and fluid pore pressure in a debris flow. Geophys. Res. Lett. 34, 7 (2007) [CrossRef] [Google Scholar]
- V. Coviello, M. Arattano, F. Comiti, et al. Seismic Characterization of Debris Flows: Insights into Energy Radiation and Implications for Warning. J. Geophys. Res. Earth. Surf. 124, 6 (2019) [Google Scholar]
- M. Chmiel, F. Walter, M. Wenner, et al. Machine Learning Improves Debris Flow Warning. Geophys. Res. Lett. 48, 3 (2021) [CrossRef] [Google Scholar]
- K. L. Cook, R. Rekapalli, M. Dietze, et al. Detection and potential early warning of catastrophic flow events with regional seismic networks. Science. 374 (2021) [Google Scholar]
- S. Newcomb. Note on the Frequency of Use of the Different Digits in Natural Numbers. Am. J. Math. 4, 1/4 (1881) [Google Scholar]
- F. Benford. The Law of Anomalous Numbers. American Philosophical Society. 78 551-572 (1938) [Google Scholar]
- P. Schatte. On mantissa distributions in computing and Benford's law. Proc. Am. Math. Soc. 24, 9 (1988) [Google Scholar]
- TP. Hill. The Signifilcant Digit Phenomenon. Am. Math. Mon. 86, (1998) [Google Scholar]
- J. Omona, SJ. Miller, P. Fukofuka. Benford’s Law: Theory and Applications Benford’s Law : Theory and Applications. (Princeton University Press, 2015) [Google Scholar]
- TP. Hill. Base-Invariance Implies Benford’s Law. Proc. Am. Math. Soc. 123, (1995) [Google Scholar]
- C. Durtschi, W. Hillison, C. Pacini. The effective use of Benford’s law to assist in detecting fraud in accounting data. J. Forensic. Account. 5, 1 (2004) [Google Scholar]
- WKT. Cho, BJ. Gaines. Breaking the (Benford) law: Statistical fraud detection in campaign finance. Am. Stat. 61, 3 (2007) [Google Scholar]
- G. Castañeda. La ley de Benford y su aplicabilidad en el análisis forense de resultados electorales. Polit. Y. Gob. 18, 2 (2011) [Google Scholar]
- E. Ley. On the Peculiar Distribution of the U.S. Stock Indexes’ Digits. (American Statistician, 1996) [Google Scholar]
- A. Geyer, J. Martí. Applying Benford’s law to volcanology. Geology. 40, 4 (2012) [Google Scholar]
- R. Joannes-Boyau, T. Bodin, A. Scheffers, et al. Using Benford’s law to investigate natural hazard dataset homogeneity. Sci. Rep. 5 (2015) [CrossRef] [Google Scholar]
- M. Sambridge, H. Tkalčić, A. Jackson. Benford’s law in the natural sciences. Geophys. Res. Lett. 37, 22 (2010) [Google Scholar]
- W. Sun, H. Tkalčić. Repetitive marsquakes in Martian upper mantle. Nat. Commun. 13, 1 (2022) [Google Scholar]
- A. Schöpa, WA. Chao, BP. Lipovsky, et al. Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis: Precursor, motion and aftermath. Earth. Surf. Dyn. 6, 2 (2018) [Google Scholar]
- M. Dietze, JM. Turowski, KL. Cook, et al. Spatiotemporal patterns, triggers and anatomies of seismically detected rockfalls. Earth. Surf. Dyn. 5, 4 (2017) [Google Scholar]
- A. Badoux, C. Graf, J. Rhyner, et al. A debris-flow alarm system for the Alpine Illgraben catchment: Design and performance. Nat. Hazards. 49, 3 (2009) [Google Scholar]
- F. Schlunegger, A. Badoux, BW. McArdell, et al. Limits of sediment transfer in an alpine debris-flow catchment, Illgraben, Switzerland. Quat. Sci. Rev. 28, 11–12 (2009) [Google Scholar]
- F. Schlunegger, K. Norton, R. Caduff. Hillslope Processes in Temperate Environments. Treatise. Geomorphol. 7 (2013) [Google Scholar]
- M. Farin, VC. Tsai, MP. Lamb, et al. A physical model of the high-frequency seismic signal generated by debris flows. Earth. Surf. Process Landforms. 44, 13 (2019) [Google Scholar]
- CE. Shannon. A Mathematical Theory of Communication. Bell System Technical Journal. 27, (1948) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.