Open Access
Issue |
E3S Web Conf.
Volume 416, 2023
3rd International Conference on Oil & Gas Engineering and Geological Sciences (OGEGS 2023)
|
|
---|---|---|
Article Number | 01034 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/e3sconf/202341601034 | |
Published online | 10 August 2023 |
- Li Y, Pang Y, Tu H, Torrigino F, Biollaz SMA, Li Z, et al. Impact of syngas from biomass gasification on solid oxide fuel cells: A review study for the energy transition. ENERG CONVERS MANAGE. 2021; 250:114894. [CrossRef] [Google Scholar]
- Kim DH, Bae Y, Lee S, Son J, Shim JH, Hong J. Thermal analysis of a 1-kW hydrogen-fueled solid oxide fuel cell stack by three-dimensional numerical simulation. ENERG CONVERS MANAGE. 2020; 222:113213. [CrossRef] [Google Scholar]
- Yuan J, Rokni M, Sundén B. Three-dimensional computational analysis of gas and heat transport phenomena in ducts relevant for anode-supported solid oxide fuel cells. INT J HEAT MASS TRAN. 2003; 46:809-21. [CrossRef] [Google Scholar]
- Wang Y, Yoshiba F, Watanabe T, Weng S. Numerical analysis of electrochemical characteristics and heat/species transport for planar porouselectrode-supported SOFC. J POWER SOURCES. 2007; 170:101-10. [CrossRef] [Google Scholar]
- Ba L, Xiong X, Yang Z, Lei Z, Ge B, Peng S. A novel multi-physics and multi-dimensional model for solid oxide fuel cell stacks based on alternative mapping of BP neural networks. J POWER SOURCES. 2021; 500:229784. [CrossRef] [Google Scholar]
- Peksen M. A coupled 3D thermofluidthermomechanical analysis of a planar type production scale SOFC stack. INT JHYDROGEN ENERG. 2011; 36:11914-28. [CrossRef] [Google Scholar]
- Zhao C, Yang J, Zhang T, Yan D, Pu J, Chi B, et al. Numerical simulation of flow distribution for external manifold design in solid oxide fuel cell stack. INT J HYDROGEN ENERG. 2017; 42:7003-13. [CrossRef] [Google Scholar]
- Hussain J, Ali R, Akhtar MN, Jaffery MH, Shakir I, Raza R. Modeling and simulation of planar SOFC to study the electrochemical properties. CURR APPL PHYS. 2020; 20:660-72. [CrossRef] [Google Scholar]
- Russner N, Dierickx S, Weber A, Reimert R, IversTiffée E. Multiphysical modelling of planar solid oxide fuel cell stack layers. J POWER SOURCES. 2020; 451:227552. [CrossRef] [Google Scholar]
- Ma T, Yan M, Zeng M, Yuan J, Chen Q, Sundén B, et al. Parameter study of transient carbon deposition effect on the performance of a planar solid oxide fuel cell. APPL ENERG. 2015; 152:217-28. [CrossRef] [Google Scholar]
- Chen B, Xu H, Ni M. Modelling of finger-like channelled anode support for SOFCs application. SCI BULL. 2016; 61:1324-32. [CrossRef] [Google Scholar]
- Su S, Zhang Q, Gao X, Periasamy V, Kong W. Effects of changes in solid oxide fuel cell electrode thickness on ohmic and concentration polarizations. INT J HYDROGEN ENERG. 2016; 41:16181-90. [CrossRef] [Google Scholar]
- Wei SS, Wang TH, Wu JS. Numerical modeling of interconnect flow channel design and thermal stress analysis of a planar anode-supported solid oxide fuel cell stack. ENERGY. 2014; 69:553-61. [CrossRef] [Google Scholar]
- He Z, Birgersson E, Li H. Reduced non-isothermal model for the planar solid oxide fuel cell and stack. ENERGY. 2014; 70:478-92. [CrossRef] [Google Scholar]
- Yan M, Fu P, Li X, Zeng M, Wang Q. Mass transfer enhancement of a spiral-like interconnector for planar solid oxide fuel cells. APPL ENERG. 2015; 160:954-64. [CrossRef] [Google Scholar]
- Di Chu. Numerical Simulation of Electrochemical Properties of Plate Solid Oxide Fuel Cell: Institute of Scientific and Technical Information of China; 2020. [Google Scholar]
- Hajimolana SA, Hussain MA, Daud WMAW, Soroush M, Shamiri A. Mathematical modeling of solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews. 2011; 15:1893-917. [CrossRef] [Google Scholar]
- Xiaolian Li. Optimization of interconnect structure of solid oxide fuel cell based on multi-physical modeling: Tsinghua University; 2018. [Google Scholar]
- Kupecki J, Motylinski K, Milewski J. Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model. APPL ENERG. 2018; 227:198-205. [CrossRef] [Google Scholar]
- Lin B, Shi Y, Cai N. Numerical simulation of cell-tocell performance variation within a syngas-fuelled planar solid oxide fuel cell stack. APPL THERM ENG. 2017; 114:653-62. [CrossRef] [Google Scholar]
- Gawel DA, Pharoah JG, Beale SB. Development of a SOFC performance model to analyze the powder to power performance of electrode microstructures. ECS Transactions. 2015; 68:1979. [CrossRef] [Google Scholar]
- Changfu Guo. Modeling Study on Transport Characteristics and Performance of Solid Oxide Fuel Cells: Dalian University of Technology; 2018. [Google Scholar]
- Cui Y, Liu H, Wang Q, Zheng Z, Wang H, Yue Z, et al. Investigation on the ignition delay prediction model of multi-component surrogates based on back propagation (BP) neural network. COMBUST FLAME. 2022; 237:111852. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.