Open Access
Issue
E3S Web Conf.
Volume 421, 2023
International Conference on Sustainable Management of Earth Resources and Biodiversity (SERBEMA-2023)
Article Number 04013
Number of page(s) 5
Section Ecology and Environment
DOI https://doi.org/10.1051/e3sconf/202342104013
Published online 06 September 2023
  1. Zhang, Y., Ma, Z., Zhi, X., Chen, X., Zhou, J., Wei, L., & Liu, Z. (2023). Damage characteristics and constitutive model of phosphogypsum/fly ash/slag recycled aggregate concrete under uniaxial compression. Cement and Concrete Composites, 138, 104980. [CrossRef] [Google Scholar]
  2. Shen, W., Zhou, M., Ma, W., Hu, J., & Cai, Z. (2009). Investigation on the application of steel slag–fly ash–phosphogypsum solidified material as road base material. Journal of hazardous materials, 164(1), 99-104. [CrossRef] [PubMed] [Google Scholar]
  3. Kumar, S. S., Kumar, A., Singh, S., Malyan, S. K., Baram, S., Sharma, J., ... & Pugazhendhi, A. (2020). Industrial wastes: Fly ash, steel slag and phosphogypsumpotential candidates to mitigate greenhouse gas emissions from paddy fields. Chemosphere, 241, 124824. [CrossRef] [PubMed] [Google Scholar]
  4. Li, B., Li, L., Chen, X., Ma, Y., & Zhou, M. (2022). Modification of phosphogypsum using circulating fluidized bed fly ash and carbide slag for use as cement retarder. Construction and Building Materials, 338, 127630. [CrossRef] [Google Scholar]
  5. Huang, Y., & Lin, Z. (2010). Investigation on phosphogypsum–steel slag–granulated blast-furnace slag–limestone cement. Construction and Building Materials, 24(7), 12961301. [Google Scholar]
  6. Vaičiukynienė, D., Nizevičienė, D., Kielė, A., Janavičius, E., & Pupeikis, D. (2018). Effect of phosphogypsum on the stability upon firing treatment of alkali-activated slag. Construction and Building Materials, 184, 485-491. [CrossRef] [Google Scholar]
  7. Zheng, Y., Xuan, D., Shen, B., & Ma, K. (2023). Shrinkage mitigation of alkali-activated fly ash/slag mortar by using phosphogypsum waste. Construction and Building Materials, 375, 130978. [CrossRef] [Google Scholar]
  8. Szajerski, P., Bogobowicz, A., Bem, H., & Gasiorowski, A. (2019). Quantitative evaluation and leaching behavior of cobalt immobilized in sulfur polymer concrete composites based on lignite fly ash, slag and phosphogypsum. Journal of Cleaner Production, 222, 90-102. [CrossRef] [Google Scholar]
  9. Mashifana, T. P., Okonta, F. N., & Ntuli, F. (2018). Geotechnical properties and microstructure of lime-fly ash-phosphogypsum-stabilized soil. Advances in Civil Engineering, 2018. [Google Scholar]
  10. Li, F., Zhao, W., Li, J., Fan, H., Xu, M., Han, G., ... & Fang, Y. (2023). Investigation on influencing mechanisms of phosphogypsum (PG) on the ash fusion behaviors of coal. Energy, 268, 126699. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.