Open Access
Issue
E3S Web Conf.
Volume 425, 2023
International Conference of Technology on Community and Environmental Development (ICTCED 2023)
Article Number 03001
Number of page(s) 13
Section Green & Blue Economy
DOI https://doi.org/10.1051/e3sconf/202342503001
Published online 14 September 2023
  1. PUPR, “Strategic Plan of the Ministry of Public Works and Public Housing Year 2020-2024, ” p. 97, 2020. [Google Scholar]
  2. V. Ramachandran, “Convergence, development, and energy‐intensive infrastructure in Africa: A review of the evidence, ” Sustain., vol. 13, no. 19, 2021, doi: 10.3390/su131910572. [Google Scholar]
  3. D. Chai, M. Wang, and K. Liu, “Driving factors of natural disasters in belt and road countries, ” Int. J. Disaster Risk Reduct., vol. 51, no. May, p. 101774, 2020, doi: 10.1016/j.ijdrr.2020.101774. [CrossRef] [Google Scholar]
  4. J. Ayeelyan, G. H. Lee, H. C. Hsu, and P. A. Hsiung, “Advantage Actor-Critic for Autonomous Intersection Management, ” Vehicles, vol. 4, no. 4, pp. 1391–1412, 2022, doi: 10.3390/vehicles4040073. [CrossRef] [Google Scholar]
  5. B. Liu, J. Long, M. Deng, X. Yang, and Y. Shi, “An Adaptive Route Planning Method of Connected Vehicles for Improving the Transport Efficiency, ” ISPRS Int. J. Geo-Information, vol. 11, no. 1, 2022, doi: 10.3390/ijgi11010039. [Google Scholar]
  6. A. M. Rahimi, M. A. Dulebenets, and A. Mazaheri, “Evaluation of microsimulation models for roadway segments with different functional classifications in Northern Iran, ” Infrastructures, vol. 6, no. 3, pp. 1–26, 2021, doi: 10.3390/infrastructures6030046. [CrossRef] [Google Scholar]
  7. P. Witchayaphong, S. Pravinvongvuth, K. Kanitpong, K. Sano, and S. Horpibulsuk, “Influential factors affecting travelers’ mode choice behavior on mass transit in Bangkok, Thailand, ” Sustain., vol. 12, no. 22, pp. 1–18, 2020, doi: 10.3390/su12229522. [Google Scholar]
  8. Z. Liao, J. Wang, Y. Li, and X. Hu, “Managing the Morning Commute Problem with Tradable Credit Schemes under a Fully Autonomous Vehicle Environment, ” Systems, vol. 10, no. 6, pp. 1–23, 2022, doi: 10.3390/systems10060200. [Google Scholar]
  9. A. Alam, L. Singh, Z. A. Jaffery, Y. K. Verma, and M. Diwakar, “Distance-based confidence generation and aggregation of classifier for unstructured road detection, ” J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 10, pp. 8727–8738, 2022, doi: 10.1016/j.jksuci.2021.09.020. [Google Scholar]
  10. H. N. Nurjaman, L. Faizal, N. Suaryana, Y. Dharmawan, and Suwito, “The experimental study of precast concrete panel connection system for rigid pavement in Indonesia, ” AIP Conf. Proc., vol. 2227, no. May, 2020, doi: 10.1063/5.0004195. [Google Scholar]
  11. M. N. Kamel Boulos, A. D. Tsouros, and A. Holopainen, “‘Social, innovative and smart cities are happy and resilient’: Insights from the WHO EURO 2014 International healthy cities conference, ” Int. J. Health Geogr., vol. 14, no. 1, pp. 1–9, 2015, doi: 10.1186/1476-072X-14-3. [CrossRef] [Google Scholar]
  12. M. A. Beyzatlar, “Causality between Dow Jones Transportation Index, CPI Transportation Index and Transportation Services Index, ” Pressacademia, vol. 8, no. 1, pp. 1–4, 2018, doi: 10.17261/pressacademia.2018.969. [CrossRef] [Google Scholar]
  13. T. Tong and T. E. Yu, “Transportation and economic growth in China: A heterogeneous panel cointegration and causality analysis, ” J. Transp. Geogr., vol. 73, no. March, pp. 120–130, 2018, doi: 10.1016/j.jtrangeo.2018.10.016. [CrossRef] [Google Scholar]
  14. K. W. Proctor, G. S. Murthy, and C. W. Higgins, “Agrivoltaics align with green new deal goals while supporting investment in the us’ rural economy, ” Sustain., vol. 13, no. 1, pp. 1–11, 2021, doi: 10.3390/su13010137. [Google Scholar]
  15. E. Rozzi, F. D. Minuto, A. Lanzini, and P. Leone, “Green synthetic fuels: Renewable routes for the conversion of non-fossil feedstocks into gaseous fuels and their end uses, ” Energies, vol. 13, no. 2, 2020, doi: 10.3390/en13020420. [Google Scholar]
  16. H. Nazir et al., “Is the H2 economy realizable in the foreseeable future? Part II: H2 storage, transportation, and distribution, ” Int. J. Hydrogen Energy, vol. 45, no. 41, pp. 20693–20708, 2020, doi: 10.1016/j.ijhydene.2020.05.241. [CrossRef] [Google Scholar]
  17. H. Feng, Z. Liu, J. Wu, W. Iqbal, W. Ahmad, and M. Marie, “Nexus between Government spending’s and Green Economic performance: Role of green finance and structure effect, ” Environ. Technol. Innov., vol. 27, p. 102461, 2022, doi: 10.1016/j.eti.2022.102461. [CrossRef] [Google Scholar]
  18. Bappenas, “Technical Guidelines for Developing Action Plans Edition II Sustainable Development Goals (TPB/SDGs), ” Kementeri. PPN, 2020. [Google Scholar]
  19. H. Setiawan and E. N. Surachman, “Financial Model of Viability Gap Fund: Case Study on Palembang-Indralaya Toll Road Project, ” Kaji. Ekon. Keuang., vol. 19, no. 3, pp. 204–217, 2015. [Google Scholar]
  20. R. C. Jou and K. H. Chen, “Highway driver’s wilingness to pay for speeding violations in Taiwan, ” J. Adv. Transp., vol. 47, no. June 2010, pp. 512–525, 2011, doi: 10.1002/atr. [Google Scholar]
  21. J. E. Yusuf, L. O’Connell, and K. A. Anuar, “For whom the tunnel be tolled: A four-factor model for explaining willingness-to-pay tolls, ” Transp. Res. Part A Policy Pract., vol. 59, pp. 13–21, 2014, doi: 10.1016/j.tra.2013.10.021. [CrossRef] [Google Scholar]
  22. H. T. Zuna, S. P. Hadiwardoyo, and H. Rahadian, “Analyzing Service Quality of Toll Road and Its Relation with Customer Satisfaction in Indonesia using Multivariate Analysis, ” no. August, pp. 10–13, 2015. [Google Scholar]
  23. A. Abulibdeh and E. Zaidan, “Analysis of factors affecting willingness to pay for high-occupancy-toll lanes: Results from stated-preference survey of travelers, ” J. Transp. Geogr., vol. 66, no. October 2017, pp. 91–105, 2018, doi: 10.1016/j.jtrangeo.2017.11.015. [CrossRef] [Google Scholar]
  24. J. Gomez, A. Papanikolaou, and J. M. Vassallo, “Users’ perceptions and willingness to pay in interurban toll roads: identifying differences across regions from a nationwide survey in Spain, ” Transportation (Amst)., vol. 44, no. 3, pp. 449–474, 2017, doi: 10.1007/s11116-015-9662-6. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.