Open Access
Issue |
E3S Web Conf.
Volume 426, 2023
The 5th International Conference of Biospheric Harmony Advanced Research (ICOBAR 2023)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 6 | |
Section | Integrated Sustainable Science and Technology Innovation | |
DOI | https://doi.org/10.1051/e3sconf/202342601014 | |
Published online | 15 September 2023 |
- M. Salonen, K. Vapalahti, K. Tiira, A. Mäki-Tanila, and H. Lohi, Breed differences of heritable behaviour traits in cats, Nature (2019) [Google Scholar]
- L. Plitman, P. Cerná, M.J. Farnworth, R.M.A. Packer, and D.A. Gunn-Moore, Motivation of Owners to Purchase Pedigree Cats, with Specific Focus on the Acquisition of Brachycephalic Cats, MDPI (2019) [Google Scholar]
- Y. Zhang, J. Gao, H. Zhou, Breeds Classification with Deep Convolutional Neural Networks, 12th International Conference on Machine Learning and Computing (2020) [Google Scholar]
- T. Karlita, R. Asmara, N.A. Choirunisa, and F. Setyorini, Cat Breeds Classification Using Compound Model Scaling Convolutional Neural Networks, in International Conference on Applied Science and Technology on Social Science, iCAST (2021) [Google Scholar]
- M. Tan, and Q.V. Le, EfficientNetV2: Smaller Models and Faster Training, (Arxiv, 2021) [Google Scholar]
- Wang, I. Hung, Mahardi, K.C. Lee, S.L. Chang, Predicting the Breed of Dogs and Cats with Fine-Tuned Keras Applications, Intelligent Automation & Soft Computing (2021) [Google Scholar]
- S.C. Huang, A. Pareek, S. Seyyedi, I. Banerjee, and M.P. Lungren, Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guideline, (npj Digital Medicine, 2020) [Google Scholar]
- M.A.A. Fawwaz, K.N. Ramadhani, and F. Sthevanie, Klasifikasi Ras pada Kucing menggunakan Algoritma Convolutional Neural Network (CNN), in e-Proceeding of Engineering, 8 (2021) [Google Scholar]
- O. Gano, Gano Cat Breed Image Collection (Kaggle, 2022) [Google Scholar]
- Mahardi, I.H. Wang, K.C. Lee, and S.L, Chang, Images Classification of Dogs and Cats using Fine- Tuned VGG Models, in 2nd IEEE Eurasia Conference on IOT, Communication and Engineering (2020) [Google Scholar]
- A. Imanuel, and D.H. Setiabudi, Penerapan Convolutional Neural Network dengan Pre-Trained Model Xception untuk Meningkatkan Akurasi dalam Mengidentifikasi Jenis Ras Kucing, 10 (INFRA, 2022) [Google Scholar]
- L.O.A.S. Sagala, Klasifikasi Cats and Dogs dengan metode CNN dalam Fungsi Aktivasi relu, sigmoid, softmax, softplus, softsign, dan selu, (2022) [Google Scholar]
- K. Ali, Z.A. Shaikh, A.A. Khan, and A.A. Laghari, Multiclass skin cancer classification using EfficientNets – a first step towards preventing skin cancer, (Elsevier, 2022) [Google Scholar]
- D. Kitaguchi, N. Takeshita, H. Matsuzaki, T. Oda, M. Watanabe, K. Mori, E. Kobayashi, and M. Ito, automated laparoscopic colorectal surgery workflow recognition using artificial intelligence: Experimental research, (Elsevier, 2020) [Google Scholar]
- L. Wang, K. He, X. Feng, and X. Ma, Multilayer feature fusion with parallel convolutional block for fine-grained image classification, (IEEE, 2019) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.