Open Access
Issue
E3S Web Conf.
Volume 426, 2023
The 5th International Conference of Biospheric Harmony Advanced Research (ICOBAR 2023)
Article Number 02090
Number of page(s) 6
Section Innovative Management and Sustainable Society
DOI https://doi.org/10.1051/e3sconf/202342602090
Published online 15 September 2023
  1. A. Maharani and S. B. Wasono, “Perbandingan Perkerasan Kaku Dan Perkerasan Lentur (Studi Kasus Ruas Jalan Raya Pantai Prigi-Popoh Kab. Tulungagung),” Ge-STRAM: Jurnal Perencanaan dan Rekayasa Sipil, vol. 1, no. 2, pp. 89–94, 2018. [CrossRef] [Google Scholar]
  2. Pavement Interactive, “ Pavement Types.” https://pavementinteractive.org/reference-desk/pavement-types-and-history/pavement-types/ (accessed Jun. 06, 2023). [Google Scholar]
  3. M. Sjahdanulirwan, “Kelebihan serta kekurangan perkerasan beraspal dan beton,” Jurnal Jalan-Jembatan, vol. 25, no. 1, pp. 1–11, 2008. [Google Scholar]
  4. Kros and Iriyadi, “Analisis Anggaran dan Pengendalian Biaya Terhadap Peningkatan Efisiensi Biaya,” Sekolah Tinggi Ilmu Ekonomi Kesatuan, no. July, 2018. [Google Scholar]
  5. D. W. FAN and F. WANG, “Managing Pavement Maintenance and Rehabilitation Projects under Budget Uncertainties,” Journal of Transportation Systems Engineering and Information Technology, vol. 14, no. 6, pp. 92–100, 2014, doi: https://doi.org/10.1016/S1570-6672(13)60145-2. [CrossRef] [Google Scholar]
  6. X. Sun, H. Wang, and S. Mei, “Highway performance prediction model of International Roughness Index based on panel data analysis in subtropical monsoon climate,” Constr Build Mater, vol. 366, p. 130232, 2023, doi: https://doi.org/10.1016/j.conbuildmat.2022.130232. [CrossRef] [Google Scholar]
  7. S. M. Piryonesi and T. E. El-Diraby, “Examining the relationship between two road performance indicators: Pavement condition index and international roughness index,” Transportation Geotechnics, vol. 26, p. 100441, 2021, doi: https://doi.org/10.1016/j.trgeo.2020.100441. [CrossRef] [Google Scholar]
  8. P. R. Pawar, A. T. Mathew, and M. R. Saraf, “IRI (International Roughness Index): An Indicator Of Vehicle Response,” Mater Today Proc, vol. 5, no. 5, Part 2, pp. 11738–11750, 2018, doi: https://doi.org/10.1016/j.matpr.2018.02.143. [CrossRef] [Google Scholar]
  9. C. Hettiarachchi, J. Yuan, S. Amirkhanian, and F. Xiao, “Measurement of pavement unevenness and evaluation through the IRI parameter – An overview,” Measurement, vol. 206, p. 112284, 2023, doi: https://doi.org/10.1016/j.measurement.2022.112284 [CrossRef] [Google Scholar]
  10. W. Zhang, S. Shen, A. Faheem, P. Basak, S. Wu, and L. Mohammad, “Predictive quality of the pavement ME design program for field performance of warm mix asphalt pavements,” Constr Build Mater, vol. 131, pp. 400–410, 2017, doi: https://doi.org/10.1016/j.conbuildmat.2016.11.086. [CrossRef] [Google Scholar]
  11. X. Shu, Z. Wang, and I. A. Basheer, “Large-scale evaluation of pavement performance models utilizing automated pavement condition survey data,” International Journal of Transportation Science and Technology, vol. 11, no. 4, pp. 678–689, 2022, doi: https://doi.org/10.1016/j.ijtst.2021.09.003. [CrossRef] [Google Scholar]
  12. H. Pérez-Acebo, H. Gonzalo-Orden, D. J. Findley, and E. Rojí, “Modeling the international roughness index performance on semi-rigid pavements in single carriageway roads,” Constr Build Mater, vol. 272, p. 121665, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2020.121665. [CrossRef] [Google Scholar]
  13. J. Zhao and H. Wang, “Mechanistic-empirical analysis of asphalt pavement fatigue cracking under vehicular dynamic loads,” Constr Build Mater, vol. 284, p. 122877, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.122877. [CrossRef] [Google Scholar]
  14. M. R. Kaloop, S. M. El-Badawy, J. W. Hu, and R. T. Abd El-Hakim, “International Roughness Index prediction for flexible pavements using novel machine learning techniques,” Eng Appl Artif Intell, vol. 122, p. 106007, 2023, doi: https://doi.org/10.1016/j.engappai.2023.106007. [CrossRef] [Google Scholar]
  15. K. A. Abaza, “Empirical-Markovian approach for estimating the flexible pavement structural capacity: Caltrans method as a case study,” International Journal of Transportation Science and Technology, vol. 10, no. 2, pp. 156–166, 2021, doi: https://doi.org/10.1016/j.ijtst.2020.12.007. [CrossRef] [Google Scholar]
  16. A. Onayev and O. Swei, “IRI deterioration model for asphalt concrete pavements: capturing performance improvements over time,” Constr Build Mater, vol. 271, p. 121768, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2020.121768. [CrossRef] [Google Scholar]
  17. A. Hu, Q. Bai, L. Chen, S. Meng, Q. Li, and Z. Xu, “A review on empirical methods of pavement performance modeling,” Constr Build Mater, vol. 342, p. 127968, 2022, doi: https://doi.org/10.1016/j.conbuildmat.2022.127968. [CrossRef] [Google Scholar]
  18. S. Hanandeh, “Introducing mathematical modeling to estimate pavement quality index of flexible pavements based on genetic algorithm and artificial neural networks,” Case Studies in Construction Materials, vol. 16, p. e00991, 2022, doi: https://doi.org/10.1016/j.cscm.2022.e00991. [CrossRef] [Google Scholar]
  19. H. Gong, Y. Sun, X. Shu, and B. Huang, “Use of random forests regression for predicting IRI of asphalt pavements,” Constr Build Mater, vol. 189, pp. 890–897, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.09.017. [CrossRef] [Google Scholar]
  20. M. Delgado-Aguilar, L. Valverde-Som, and L. Cuadros-Rodríguez, “Solver, an Excel application to solve the difficulty in applying different univariate linear regression methods,” Chemometrics and Intelligent Laboratory Systems, vol. 178, pp. 39–46, 2018, doi: https://doi.org/10.1016/j.chemolab.2018.04.018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.