Open Access
Issue |
E3S Web Conf.
Volume 427, 2023
International Conference on Geotechnical Engineering and Energetic-Iraq (ICGEE 2023)
|
|
---|---|---|
Article Number | 01026 | |
Number of page(s) | 9 | |
Section | Development in Geotechnical Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202342701026 | |
Published online | 13 September 2023 |
- P. Zhang, Z.-Y. Yin, and Y.-F. Jin. Bayesian neural network-based uncertainty modelling: application to soil compressibility and undrained shear strength prediction. Canadian Geotechnical Journal. 2022;59(4):546–557. [CrossRef] [Google Scholar]
- Z. Zhao, S. S. C. Congress, G. Cai, and W. Duan. Bayesian probabilistic characterization of consolidation behavior of clays using CPTU data. Acta Geotech. 2022;17(3):931–948. [CrossRef] [Google Scholar]
- J. Xu, L. Zhang, J. Li, Z. Cao, H. Yang, and X. Chen. Probabilistic estimation of variogram parameters of geotechnical properties with a trend based on Bayesian inference using Markov chain Monte Carlo simulation. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. 2021;15(2):83–97. [CrossRef] [Google Scholar]
- M. Wang, S. Pan, Y. Tao, H. Sun, and X. Li. Hierarchical Bayesian modelling of quasi-region-specific soil porosity. Ocean Engineering. 2022;266(1):113052. [CrossRef] [Google Scholar]
- S. Zheng, Y.-X. Zhu, D.-Q. Li, Z.-J. Cao, Q.-X. Deng, and K.-K. Phoon. Probabilistic outlier detection for sparse multivariate geotechnical site investigation data using Bayesian learning. Geoscience Frontiers. 2021;12(1):425–439. [CrossRef] [Google Scholar]
- S. Zhai and G. Du. Bayesian probabilistic characterization of shear wave velocity combining cone penetration test and standard penetration test. 2022. [Google Scholar]
- W.-H. Zhou, Z.-Y. Yin, and K.-V. Yuen. Practice of Bayesian Probability Theory in Geotechnical Engineering. Springer. 2022. [Google Scholar]
- C. H. Juang and J. Zhang. Bayesian methods for geotechnical applications-a practical guide. In Geotechnical safety and reliability. 2017. [CrossRef] [Google Scholar]
- R. R. Shakir. Spatial correlation of cone tip resistance for soil in Nasiriyah. The Open Civil Engineering Journal. 2018; 12(1). [Google Scholar]
- R. R. Shakir. Selecting the probability distribution of cone tip resistance using moment ratio diagram for soil in Nasiriyah. Geotechnical and Geological Engineering. 2019;37(3):1703–1728. [CrossRef] [Google Scholar]
- R. R. Shakir and H. Wang, Estimation of probabilistic CPT-based soil profile using an unsupervised Gaussian mixture model. Arabian Journal of Geosciences. 2023;16(3):218. [CrossRef] [Google Scholar]
- R. R. Shakir. Probabilistic-based analysis of a shallow square footing using Monte Carlo simulation. Engineering Science and Technology, an International Journal. 2019;22(1):313–333. [CrossRef] [Google Scholar]
- M. O. Karkush and T. A. Altaher. Remediation of contaminated soil of Thi-Qar oil refinery plant. in Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering. 2017. [Google Scholar]
- M. O. Karkush and S. Yassin. Using sustainable material in improvement the geotechnical properties of soft clayey soil. Journal of Engineering Science and Technology. 2020;15(4):2208–2222. [Google Scholar]
- M. O. Karkush and T. A. A. Al-Taher. Geotechnical evaluation of clayey soil contaminated with industrial wastewater. Archives of civil engineering. 2017; 63(1). [Google Scholar]
- M. O. Karkush and T. A. Altaher. Risk assessment of Al-Nassyriah oil refinery soil. J Civil Eng Res. 2016; 6(1); 16–21. [Google Scholar]
- L. Decourt. The Standard Penetration Test, State of the Art Report. Oslo, Norway: Norwegian Geotechnical Institute Publication. 1990. [Google Scholar]
- H. M. Ali and R. R. Shakir. Geotechnical map of Thi Qar governorate using geographical information systems (GIS). Mater Today Proc. 2022;60(1):1286–1296. [CrossRef] [Google Scholar]
- H.-Q. Yang, L. Zhang, Q. Pan, K.-K. Phoon, and Z. Shen. Bayesian estimation of spatially varying soil parameters with spatiotemporal monitoring data. Acta Geotech. 2021;16(1):263–278. [CrossRef] [Google Scholar]
- K. K. Phoon and J. Ching, Risk and reliability in geotechnical engineering. CRC Press Boca Raton, F.L., USA, 2015 [Google Scholar]
- A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian data analysis. CRC press. 2013. [CrossRef] [Google Scholar]
- Y. Wang and Z. Cao. Probabilistic characterization of Young’s modulus of soil using equivalent samples. Eng Geol. 2013;159(1):106–118. [CrossRef] [Google Scholar]
- H. Williams and O. N. Ledesma. Use of Bayesian Hierarchical Models to Estimate Geotechnical Parameters for Tailings. [Google Scholar]
- L. F. Contreras, M. Serati, and D. J. Williams. Bayesian approach for the assessment of sufficiency of geotechnical data. In Slope Stability 2020: Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics. 2020. [Google Scholar]
- Z. Cao, Y. Wang, and D. Li. Probabilistic approaches for geotechnical site characterization and slope stability analysis. Springer. 2017. [CrossRef] [Google Scholar]
- K. Terzaghi, R. B. Peck, and G. Mesri. Soil mechanics in engineering practice. John Wiley & sons. 1996. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.