Open Access

This article has an erratum: [https://doi.org/10.1051/e3sconf/202342701032]


Issue
E3S Web Conf.
Volume 427, 2023
International Conference on Geotechnical Engineering and Energetic-Iraq (ICGEE 2023)
Article Number 01029
Number of page(s) 9
Section Development in Geotechnical Engineering
DOI https://doi.org/10.1051/e3sconf/202342701029
Published online 13 September 2023
  1. Bhatia KG. Foundations for industrial machines and earthquake effects. ISET Journal of Earthquake Technology, Paper. 2008 Mar(495):1-2. [Google Scholar]
  2. IAEA.. PROBABILISTIC SAFETY ASSESSMENT FOR SEISMIC EVENTS. International Atomic Energy Agency; 2021. [Google Scholar]
  3. Saied M, Al-Busoda B. Behaviour of machine foundation resting on collapsible soil. International Conference on Earthquake Geotechnical Engineering from Case Histories to Practice, Istanbul, Turkey. [Google Scholar]
  4. Chuang TY, Wells JE, Johnson JJ. Seismic risk assessment of a BWR: 1985, status report. [Google Scholar]
  5. Katsanos EI, Thöns S, Georgakis CT. Wind turbines and seismic hazard: a state-of-the-art review. Wind Energy. 2016 Nov;19(11):2113-33. [CrossRef] [Google Scholar]
  6. Yamaguchi A, Nakamura S. Revision of the AESJ Standard for Seismic Probabilistic Risk Assessment (3) Fragility Evaluation. PSAM, 2014. [Google Scholar]
  7. Zhang J, Yang F, Liang C, Zhang Y, Li Y. An SVDD-based post-processing approach for vibration risk assessment of the hydro-turbine-generator in a large hydropower station. Journal of Low Frequency Noise, Vibration and Active Control. 2021 Sep;40(3):1309-34. [CrossRef] [Google Scholar]
  8. Jia J, Jia. Soil dynamics and foundation modeling. Switzerland: Springer; 2018. [CrossRef] [Google Scholar]
  9. Gupta ID. The state of the art in seismic hazard analysis. ISET J Earthq Technol. 2002 Dec;39(4):311-46. [Google Scholar]
  10. McGuire RK. Probabilistic seismic hazard analysis and design earthquakes: closing the loop. Bulletin of the Seismological Society of America. 1995 Oct 1;85(5):1275-84. [CrossRef] [Google Scholar]
  11. Al-Taie AJ, Albusoda BS. Earthquake hazard on Iraqi soil: Halabjah earthquake as a case study. Geodesy and Geodynamics. 2019; 10 (3):196-204. [CrossRef] [Google Scholar]
  12. Armstrong RJ, Boulanger RW, Beaty MH. Equivalent static analysis of piled bridge abutments affected by earthquake-induced liquefaction. Journal of Geotechnical and Geoenvironmental Engineering. 2014 Aug 1;140(8):04014046. [CrossRef] [Google Scholar]
  13. Park GJ. Technical overview of the equivalent static loads method for non-linear static response structural optimization. Structural and Multidisciplinary Optimization. 2011 Mar;43:319-37. [CrossRef] [Google Scholar]
  14. Kiureghian AD. A response spectrum method for random vibration analysis of MDF systems. Earthquake Engineering & Structural Dynamics. 1981;9(5):419-35. [CrossRef] [Google Scholar]
  15. Beer M, Kougioumtzoglou IA, Patelli E, Au SK, editors. Encyclopedia of earthquake engineering. Berlin/Heidelberg, Germany: Springer; 2015. [CrossRef] [Google Scholar]
  16. McGuire RK. Probabilistic seismic hazard analysis: Early history. Earthquake Engineering & Structural Dynamics. 2008 Mar;37(3):329-38. [CrossRef] [Google Scholar]
  17. Ellingwood BR. Earthquake risk assessment of building structures. Reliability Engineering & System Safety. 2001 Dec 1;74(3):251-62. [CrossRef] [Google Scholar]
  18. Bommer JJ, Douglas J, Scherbaum F, Cotton F, Bungum H, Fah D. On the selection of ground-motion prediction equations for seismic hazard analysis. Seismological Research Letters. 2010 Sep 1;81(5):783-93. [CrossRef] [Google Scholar]
  19. Bounds WL, Louis FG, Sheikh AH, Brant WD, Moll J, Smalley AJ, Fang SJ, Pearce IW, Smith PA, Harsh S, Rossi A. Foundations for Dynamic Equipment, 2004. [Google Scholar]
  20. Yang Y, Bashir M, Li C, Wang J. Analysis of seismic behaviour of an offshore wind turbine with a flexible foundation. Ocean Engineering. 2019 Apr 15;178:215-28. [CrossRef] [Google Scholar]
  21. Kikuchi M, McNally K, Tittmann BR. Machine stiffness appropriate for experimental simulation of earthquake processes. Geophysical Research Letters. 1981 Apr;8(4):321-3. [CrossRef] [Google Scholar]
  22. El Naggar MH. Evaluation of performance of machine foundation under blast-induced excitation. WIT Transactions on The Built Environment. 2000 Jun 29;48 [Google Scholar]
  23. An D, Qu TJ. Seismic behavior of turbine-generator foundation under strong earthquake action in different directions. Advances in Civil Engineering. 2018;2018:1-0. [Google Scholar]
  24. Samali B, Kim KB, Yang JN. Random vibration of rotating machines under earthquake excitations. Journal of Engineering Mechanics. 1986 Jun;112(6):550-65. [CrossRef] [Google Scholar]
  25. Rao CK, Mirza S. Seismic analysis of high-speed rotating machinery. Nuclear engineering and design. 1989 Feb 2;111(3):395-402. [CrossRef] [Google Scholar]
  26. Pantelides CP. Control of Seismic Response of Structures. InSecond International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics (1991: March 11-15; St. Louis, Missouri) 1991. Missouri S&T (formerly the University of Missouri--Rolla). [Google Scholar]
  27. Suarez LE, Singh MP, Rohanimanesh MS. Seismic response of rotating machines. Earthquake engineering & structural dynamics. 1992;21(1):21-36. [CrossRef] [Google Scholar]
  28. Su WC, Henried AG. Seismic response of flexible rotating machines. In7th Canadian Conference on Earthquake Engineering 1995 (pp. 229-236). [Google Scholar]
  29. Su WC, Hernried AG, Yim SC. Seismic response of rotating machines-structure-RFBI systems. Earthquake engineering & structural dynamics. 2000 Feb;29(2):213-40. [CrossRef] [Google Scholar]
  30. Bhatia KG. Foundations for industrial machines and earthquake effects. ISET Journal of Earthquake Technology, Paper. 2008 Mar(495):1-2). [Google Scholar]
  31. Fleischer PS, Trombik PG. Turbo generator machine foundations subjected to earthquake loadings. InThe 14th World Conference on Earthquake Engineering, Beijing, China 2008 Oct. [Google Scholar]
  32. Jan SF, Wu SC. Dynamic analysis and design of large compressor foundations in high seismic zone. InStructures Congress 2010 2010 (pp. 2702-2713). [Google Scholar]
  33. Vicencio F, Cruz EF, Valdivia D. Evaluation of different modeling options for seismic analysis of large turbine-generator systems and their foundation. InFifteenth World Conference on Earthquake Engineering 2012. [Google Scholar]
  34. Liu Z. Design of foundations for large dynamic equipment in a high seismic region. InStructures Congress 2013: Bridging Your Passion with Your Profession 2013 (pp. 1403-1414). [Google Scholar]
  35. Thakare AU, Rangari SM. Effect of Seismic Parameters on Analysis of Turbo-Generator Foundation. International Journal of Engineering Research & Technology. 2015 May;4(05). [Google Scholar]
  36. Ramesh S, Kumar VV. Parametric Study on an Industrial Structure for Various Dynamic Loads. IJRET: International Journal of Research in Engineering and Technology. 2015, eISSN.:2319-1163. [Google Scholar]
  37. Tank YR, Tank AR, Dhameliya HK. Dynamic Analysis of Single Cylinder Compressor Block Foundation using SAP: 2000 VS. 16. International Journal of Engineering and Technology (IJETT), 2016, ISSN.:2231-5381). [Google Scholar]
  38. Tripathy S, Desai AK. Investigation of dynamic behaviour for turbo generator frame foundation through experimental and computational approach. International Journal of Geotechnical Engineering. 2017 Oct 20;11(5):513-23. [CrossRef] [Google Scholar]
  39. Paulay T, Priestley MN. Seismic design of reinforced concrete and masonry buildings. New York: Wiley; 1992 Mar. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.