Open Access
Issue
E3S Web Conf.
Volume 427, 2023
International Conference on Geotechnical Engineering and Energetic-Iraq (ICGEE 2023)
Article Number 02025
Number of page(s) 8
Section Structural Engineering and Construction
DOI https://doi.org/10.1051/e3sconf/202342702025
Published online 13 September 2023
  1. ACI Committee 318-19. Building code requirements for structural concrete. Farmington Hills, Michigan: American Concrete Institute. 2019. [Google Scholar]
  2. Yang, K. H., and Ashour, A. F. Load capacity of reinforced concrete continuous deep beams. Journal of structural engineering. 2008; 134(6): 919–929. [CrossRef] [Google Scholar]
  3. Campione G., LaMendola L., Papia M. Steel fiber reinforced concrete corbels: experimental behavior and shear strength prediction. ACI Struct J. 2007; 104(5): 570–597. [Google Scholar]
  4. Shakir Q. M., Abd Alsaheb S.D., Farsangi E. N. Rehabilitation of deteriorated reinforced self-consolidating concrete brackets and corbels using CFRP composites: diagnosis and treatment. Journal of Building Pathology and Rehabilitation. 2023. [Google Scholar]
  5. Shakir Q. M. and Abd Alsaheb S. D. High strength self-compacting corbels retrofitted by near surface mounted steel bars. Pollack Periodica. 2022. [Google Scholar]
  6. Shakir Q. M., Al-Sahlawi Y. M., B.B. Abd and Hamad S.A. Nonlinear Finite Element Analysis of High-strength Reinforced Concrete Beams with Severely Disturbed Regions. Jordan Journal of Civil Engineering. 2023; 17(10). [CrossRef] [Google Scholar]
  7. Fayed S., Basha A., Elsamak G. Behavior of RC stepped beams with different configurations: An experimental and numerical study. Structural concrete. 2020. [Google Scholar]
  8. Shakir Q. M., Hamad S. A. Enhancement of the Behaviour of Reinforced Concrete Dapped End Beams Including Single pocket Loaded by a Vertical Concentrated Force. Engineering Review. 2023. [Google Scholar]
  9. Shakir Q.M., Hamad S.A. Behavior of pocket-type high strength RC beams without or with dapped ends. Pract. Period. Struct. Des. Constr. 2021; 26(4): 04021048. [CrossRef] [Google Scholar]
  10. Mogili S. and Hwang S.-J. Softened Strut-and-Tie Model for Shear and Flexural Strengths of Reinforced Concrete Pile Caps. Journal of Structural Engineering, ASCE. 2021; 147(11). [CrossRef] [Google Scholar]
  11. Sagi M. S. V., Lakavath C., Prakash S. S., and Sharma A. Experimental study on evaluation of replacing minimum web reinforcement with discrete fibers in RC deep beams. Fibers. 2021; 9(11): DOI: 10.3390/fib9110073. [Google Scholar]
  12. Nayak C. B. Experimental and numerical study on reinforced concrete deep beam in shear with crimped steel fiber. Innov. Infrastruct. Solut. 2022; 7(1). DOI: 10.1007/s41062-021-00638-2. [CrossRef] [Google Scholar]
  13. Do-Dai, T., Tran, D. T., and Nguyen-Minh, L. Effect of fiber amount and stirrup ratio on shear resistance of steel fiber reinforced concrete deep beams. Journal of Science and Technology in Civil Engineering (STCE)-HUCE. 2021; 15(2): 1–13. [CrossRef] [Google Scholar]
  14. Abbas, Y. M., Tuken, A., and Siddiqui, N. A. Improving the structural behavior of shear-deficient RC deep beams using steel fibers: Experimental, numerical and probabilistic approach. Journal of Building Engineering. 2022; 46(1): 103711. [CrossRef] [Google Scholar]
  15. Ju, H., Yerzhanov, M., Serik, A., Lee, D., and Kim, J. R. Statistical and reliability study on shear strength of recycled coarse aggregate reinforced concrete beams. Materials. 2021; 14(12): 3321. [CrossRef] [PubMed] [Google Scholar]
  16. Soltanabadi, R., and Behfarnia, K. Shear strength of reinforced concrete deep beams containing recycled concrete aggregate and recycled asphalt pavement. Construction and Building Materials. 2022; 314(1): 125597. [CrossRef] [Google Scholar]
  17. Sérifou, M., Sbartai, Z. M., Yotte, S., Boffoué, M. O., Emeruwa, E., and Bos, F. A study of concrete made with fine and coarse aggregates recycled from fresh concrete waste. Journal of Construction Engineering. 2013. [Google Scholar]
  18. Tabsh S. W. and Abdelfatah A. S. Influence of recycled concrete aggregates on strength properties of concrete. Constr. Build. Mater. 2009; 23(2). [Google Scholar]
  19. Limbachiya M., Meddah M. S., and Y. Ouchagour Y. Use of recycled concrete aggregate in fly-ash concrete. Constr. Build. Mater. 2012; 27(1). [Google Scholar]
  20. Rao M. C., Bhattacharyya S. K., and Barai S. V. Behaviour of recycled aggregate concrete under drop weight impact load. Constr. Build. Mater. 2011; 25(1). [Google Scholar]
  21. Seara-paz, S., González-fonteboa, B., Martínez-abella, F., and Eiras-lópez, J. Flexural performance of reinforced concrete beams made with recycled concrete coarse aggregate. Eng. Struct. 2016; 156(1). [Google Scholar]
  22. Arabiyat S., Jaber A., Katkhuda H., and Shatarat N. Influence of using two types of recycled aggregates on shear behavior of concrete beams. Constr. Build. Mater. 2021; 279(1): 122475. [CrossRef] [Google Scholar]
  23. Hussein Amer Alhussein, T., and Abdul Samad Khudhair, J. Experimental and numerical evaluation of shear strength of directly and indirectly loaded flanged recycled self-compacted reinforced concrete deep beams. Journal of Engineering. 2020. [Google Scholar]
  24. Yaser Ali, A., and Ghazi Zghair, M. Experimental investigation and nonlinear analysis of hybrid reinforced Concrete Deep Beams. Al-Qadisiyah, Journal for Engineering Sciences. 2015; 8(2): 99–119. [Google Scholar]
  25. Hassan, S. A., and Faroun, G. A. Behavior of hybrid reinforced concrete deep beams under repeated loading. Civil and Environmental Research. 2016; 8(10): 14–37. [Google Scholar]
  26. Shakir Q. M. and Hanoon H. K. Behavior of High-Performance Reinforced Arched- Hybrid Self-Compacting Concrete Deep Beams. Journal of Engineering Science and Technology. 2023; 18(1): 792–813. [Google Scholar]
  27. Shakir Q. M. and Hannon H. K. A Novel Hybrid Model of Reinforced Concrete Deep Beams with Curved Hybridization. Jurnal Teknologi. 2023; 2(1): 31–39. [CrossRef] [Google Scholar]
  28. Iraqi Specification No. 5. Portland cement. Iraq, Baghdad. 1984. [Google Scholar]
  29. Iraqi Specification No.45. Natural sources for gravel that is used in concrete and construction. Iraq, Baghdad. 1984. [Google Scholar]
  30. ASTM C494/C494M-13. Standard specification for chemical admixtures for concrete. Annual Book of ASTM Standard. 2013. [Google Scholar]
  31. ASTM A 820-06. Standard specification for steel fibers for fiber reinforced concrete. 2006. [Google Scholar]
  32. ASTM C496/C496M-11. Standard test method for splitting tensile strength of cylindrical concrete specimens. Annual Book of ASTM Standard. 2011. [Google Scholar]
  33. BS 1881-116. Method for determination of compressive strength of concrete cubes. British Standards Institute, London. 1983. [Google Scholar]
  34. Low N. M. P. and Beaudoin, J. J. The flexural toughness and ductility of portland cement-based binders reinforced with wollastonite micro-fibres. Cem. Concr. Res. 1994; 24(2). DOI: 10.1016/0008-8846(94)90050-7. [Google Scholar]
  35. Noushini A., Samali B., and Vessalas K. Flexural toughness and ductility characteristics of polyvinyl-alcohol fibre reinforced concrete (PVA-FRC). Proc. 8th Int. Conf. Fract. Mech. Concr. Concr. Struct. Fram. 2013. [Google Scholar]
  36. Shakir Q.M., and Abd B.B. Retrofitting of self-compacting RC half joints with internal deficiencies by CFRP fabrics. Jurnal Teknologi. 2020; 82(6): 49–62. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.