Open Access
Issue
E3S Web Conf.
Volume 427, 2023
International Conference on Geotechnical Engineering and Energetic-Iraq (ICGEE 2023)
Article Number 03007
Number of page(s) 11
Section Transportation Science and Technology
DOI https://doi.org/10.1051/e3sconf/202342703007
Published online 13 September 2023
  1. BERGADO, D.T., et al. Evaluation of interface shear strength of composite liner system and stability analysis for a landfill lining system in Thailand. Geotextiles and Geomembranes. 2006; 24(6): 371–393. [CrossRef] [Google Scholar]
  2. Abu-Farsakh M, Coronel J, Tao M. Effect of soil moisture content and dry density on cohesive soil-geosynthetic interactions using large direct shear tests. J Mater Civ Eng. 2007;19(7):540–549. [CrossRef] [Google Scholar]
  3. Liu CN, Zornberg JG, Chen TC, Ho YH, Lin BH. Behavior of geogrid-sand interface in direct shear mode. J Geotech geoenvironmental Eng. 2009;135(12):1863–1871. [CrossRef] [Google Scholar]
  4. Liu CN, Ho YH, Huang JW. Large scale direct shear tests of soil/PET-yarn geogrid interfaces. Geotext Geomembranes. 2009;27(1):19–30. [CrossRef] [Google Scholar]
  5. Palmeira EM. Soil-geosynthetic interaction: Modelling and analysis. Geotext geomembranes. 2009;27(5):368–390. [CrossRef] [Google Scholar]
  6. Basudhar PK. Modeling of soil-woven geotextile interface behavior from direct shear test results. Geotext Geomembranes. 2010;28(4):403–408. [CrossRef] [Google Scholar]
  7. Arulrajah A, Rahman MA, Piratheepan J, Bo MW, Imteaz MA. Evaluation of interface shear strength properties of geogrid-reinforced construction and demolition materials using a modified large-scale direct shear testing apparatus. J Mater Civ Eng. 2014;26(5):974–982. [CrossRef] [Google Scholar]
  8. Piratheepan J, Arulrajah A, Disfani MM. Large-scale direct shear testing of recycled construction and demolition materials. Adv Civ Eng Mater. 2013;2(1):25–36. [Google Scholar]
  9. Chen X, Zhang J, Xiao Y, Li J. Effect of roughness on shear behavior of red clay-concrete interface in large-scale direct shear tests. Can Geotech J. 2015;52(8):1122–1135. [CrossRef] [Google Scholar]
  10. Arulrajah A, Horpibulsuk S, Maghoolpilehrood F, Samingthong W, Du YJ, Shen SL. Evaluation of interface shear strength properties of geogrid reinforced foamed recycled glass using a large-scale direct shear testing apparatus. Adv Mater Sci Eng. 2015. [Google Scholar]
  11. Ferreira FB, Vieira CS, Lopes MDL. Direct shear behaviour of residual soil-geosynthetic interfaces-influence of soil moisture content, soil density and geosynthetic type. Geosynth Int. 2015;22(3):257–272. [CrossRef] [Google Scholar]
  12. Al-Murshedi AD, Karkush MO, Karim HH. Collapsibility and shear strength of gypseous soil improved by nano silica fume (NSF). In: Key Engineering Materials. Trans Tech Publ. 2020. [Google Scholar]
  13. Karkush MO, Al-Murshedi AD, Karim HH. Investigation of the impacts of nano-clay on the collapse potential and geotechnical properties of gypseous soils. Jordan J Civ Eng. 2020;14(4). [Google Scholar]
  14. AL-Shamaa MFK, Sheikha, A.A., Karkush, M.O., Jabbar, M.S., Al-Rumaithi AA. Numerical modeling of honeycombed geocell reinforced soil. In: Modern Applications of Geotechnical Engineering and Construction: Geotechnical Engineering and Construction. Springer. 2021. [Google Scholar]
  15. Karkush MO, Almurshedi AD, Karim HH. Investigation of the Impacts of Nanomaterials on the Micromechanical Properties of Gypseous Soils. Arab J Sci Eng. 2023;48(1):665–675. [CrossRef] [Google Scholar]
  16. Sahib Banyhussan Q, Mancy Mosa A, Nasser Hussein A, Jasim Sigar E. Evaluating the Shear Strength of Subbase-subgrade Interface Using Large Scale Direct Shear Test. Int J Innov Eng [Internet]. 2023 Mar 13;3(1 SE-Original Research):35–47. Available from: https://ijie.ir/index.php/ijie/article/view/96 [CrossRef] [Google Scholar]
  17. Umashankar B, Hariprasad C, Mouli SS. Interface properties of metal-grid and geogrid reinforcements with sand. In: IFCEE. 2015. [Google Scholar]
  18. Alfaro MC, Miura N, Bergado DT. Soil-geogrid reinforcement interaction by pullout and direct shear tests. Geotech Test J. 1995;18(2):157–167. [CrossRef] [Google Scholar]
  19. Vieira CS, Pereira PM. Interface shear properties of geosynthetics and construction and demolition waste from large-scale direct shear tests. Geosynth Int. 2016;23(1):62–70. [CrossRef] [Google Scholar]
  20. Xu Y, Williams DJ, Serati M. Investigation of shear strength of interface between road-base and geosynthetics using large-scale single-stage and multi-stage direct shear test. Road Mater Pavement Des. 2020;21(6):1588–1611. [CrossRef] [Google Scholar]
  21. Bergado DT, Chai JC, Abiera HO, Alfaro MC, Balasubramaniam AS. Interaction between cohesive-frictional soil and various grid reinforcements. Geotext Geomembranes. 1993;12(4):327–349. [CrossRef] [Google Scholar]
  22. Tatlisoz N, Edil TB, Benson CH. Interaction between reinforcing geosynthetics and soil-tire chip mixtures. J Geotech Geoenvironmental Eng. 1998;124(11):1109–1119. [CrossRef] [Google Scholar]
  23. Lee KM, Manjunath VR. Soil-geotextile interface friction by direct shear tests. Can Geotech J. 2000;37(1):238–252. [CrossRef] [Google Scholar]
  24. Sakleshpur VA, Prezzi M, Salgado R, Siddiki NZ, Choi YS. Large-scale direct shear testing of geogrid-reinforced aggregate base over weak subgrade. Int J Pavement Eng. 2019;20(6):649–658. [CrossRef] [Google Scholar]
  25. Cazzuffi D, Picarelli L, Ricciuti A, Rimoldi P. Laboratory investigations on the shear strength of geogrid reinforced soils. In: GEOSYNTHETIC SOIL REINFORCEMENT TESTING PROCEDURES PAPERS PRESENTED AT A SYMPOSIUM HELD ON 19 JANUARY 1993 IN SAN ANTONIO, TEXAS, EDITED BY SCJ Cheng(SPECIAL TECHNICAL PUBLICATION (STP) 1190). 1993. [Google Scholar]
  26. Kamalzare M, Ziaie-Moayed R. Influence of geosynthetic reinforcement on the shear strength characteristics of two-layer sub-grade. Acta Geotech Slov. 2011;8(1):39–49. [Google Scholar]
  27. Indraratna B, Hussaini SKK, Vinod JS. On the shear behavior of ballast-geosynthetic interfaces. Geotech Test J. 2012;35(2). [Google Scholar]
  28. Biabani MM, Indraratna B. An evaluation of the interface behaviour of rail subballast stabilised with geogrids and geomembranes. Geotext Geomembranes. 2015;43(3):240–249. [CrossRef] [Google Scholar]
  29. Coronel, J.J. Frictional interaction properties between geomaterials and geosynthetics. Louisiana State University and Agricultural and Mechanical College. 2006. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.