Open Access
Issue |
E3S Web Conf.
Volume 428, 2023
2023 Research, Invention, and Innovation Congress (RI2C 2023)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 6 | |
Section | Energy Technology | |
DOI | https://doi.org/10.1051/e3sconf/202342801005 | |
Published online | 14 September 2023 |
- A. Toledo-Cervantes, M.L. Serejo, S. Blanco, R. Pérez, R. Lebrero, R. Muñoz, Photosynthetic biogas upgrading to bio-methane: Boosting nutrient recovery via biomass productivity control, Algal Research, 17 (2016): 46-52 [CrossRef] [Google Scholar]
- L. Méndez, D. García, E. Perez, S. Blanco, R. Muñoz, Photosynthetic upgrading of biogas from anaerobic digestion of mixed sludge in an outdoors algal-bacterial photobioreactor at pilot scale, Journal of Water Process Engineering, 48 (2022): 102891 [CrossRef] [Google Scholar]
- B. Miyawaki, A.B. Mariano, J.V.C. Vargas, W. Balmant, A.C. Defrancheschi, D.O. Corrêa, B. Santos, N.F.H. Selesu, J.C. Ordonez, V.M. Kava, Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment, Renewable Energy, 163 (2021): 1153-1165 [CrossRef] [Google Scholar]
- D. Marín, A. A. Carmona-Martínez, R. Lebrero, R. Muñoz, Influence of the diffuser type and liquidto-biogas ratio on biogas upgrading performance in an outdoor pilot scale high rate algal pond, Fuel, 275 (2020): 117999 [CrossRef] [Google Scholar]
- R. Muñoz, L. Meier, I. Diaz, D. Jeison, Rev. Environ. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading, Reviews in Environmental Science and Bio/Technology, 14 (2015): 727-759 [CrossRef] [Google Scholar]
- V. Bhola, F. Swalaha, R. Ranjith Kumar, M. Singh, F. Bux, Overview of the potential of microalgae for CO 2 sequestration, International Journal of Environmental Science and Technology, 11 (2014): 2103-2118 [CrossRef] [Google Scholar]
- J.O. Ighalo, K. Dulta, S.B. Kurniawan, F.O. Omoarukhe, U. Ewuzie, S.O. Eshiemogie, A.U. Ojo, S.R.S. Abdullah, Progress in microalgae application for CO2 sequestration, Cleaner Chemical Engineering, (2022): 100044 [Google Scholar]
- J. Alberto, V. Costa, G. A. Linde, D. Ibraim, P. Atala, Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms, World Journal of Microbiology and Biotechnology, 16 (2000): 15-18 [CrossRef] [Google Scholar]
- T.S. Gendy, S.A. El-Temtamy, Commercialization potential aspects of microalgae for biofuel production: an overview, Egyptian Journal of Petroleum, 22, 1 (2013): 43-51 [CrossRef] [Google Scholar]
- Y. Chisti, Biodiesel from microalgae, Biotechnology advances, 25, 3 (2007): 294-306 [CrossRef] [PubMed] [Google Scholar]
- W.J. Fu, Z. Chi, Z.C. Ma, H.X. Zhou, G.L. Liu, C.F. Lee, Z.M. Chi, Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable, Applied microbiology and biotechnology, 99 (2015): 7481-7494 [CrossRef] [PubMed] [Google Scholar]
- J.V.C. Vargas, A.B. Mariano, D.O. Corrêa, J.C. Ordonez, The microalgae derived hydrogen process in compact photobioreactors, international journal of hydrogen energy, 39, 18 (2014): 95889598 [Google Scholar]
- J.P. Maity, J. Bundschuh, C.Y. Chen, P. Bhattacharya, Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives-A mini review, Energy, 78 (2014): 104-113 [CrossRef] [Google Scholar]
- M. del R. Rodero, E. Posadas, A. ToledoCervantes, R. Lebrero, R. Muñoz, Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds, Algal research, 33 (2018): 284-290 [CrossRef] [Google Scholar]
- E. Posadas, D. Marín, S. Blanco, R. Lebrero, R. Muñoz, Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond, Bioresource Technology, 232 (2017): 133-141 [CrossRef] [PubMed] [Google Scholar]
- X. Li, Y. Lu, N. Li, Y. Wang, R. Yu, G. Zhu, R. J. Zeng, Mixotrophic cultivation of microalgae using biogas as the substrate, Environmental Science & Technology, 56, 6 (2022): 3669-3677 [CrossRef] [PubMed] [Google Scholar]
- A. Kumar, S. Ergas, X. Yuan, A. Sahu, Q. Zhang, J. Dewulf, F.X. Malcata, H. van Langenhove, Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, Trends in biotechnology, 28, 7 (2010): 371-380 [CrossRef] [PubMed] [Google Scholar]
- A.C. Eloka-Eboka, F.L. Inambao, Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production, Applied Energy, 195 (2017): 1100-1111 [CrossRef] [Google Scholar]
- S. Iamtham, P. Sornchai, Biofixation of CO2 from a power plant through large-scale cultivation of Spirulina maxima, South African Journal of Botany, 147 (2022): 840-851 [CrossRef] [Google Scholar]
- J.A. Siegel, P.J. Saukko, Encyclopedia of forensic sciences: Second edition, Encyclopedia of Forensic Sciences: Second Edition, (2012): 1-2250 [Google Scholar]
- E.G. Bligh, W.J. Dyer, Can. J. Biochem. Physiol. A Can. J. Biochem. Physiol, 37 (1959): 911-917 [CrossRef] [Google Scholar]
- D. Tang, W. Han, P. Li, X. Miao, J. Zhong, CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource technology, 102, 3 (2011): 3071-3076 [Google Scholar]
- W. Thiansathit, T. C. Keener, S. Khang, The kinetics of Scenedesmus obliquus microalgae growth utilizing carbon dioxide gas from biogas, Biomass and bioenergy, 76 (2015): 79-85 [CrossRef] [Google Scholar]
- B. Hu, M. Min, W. Zhou, Y. Li, M. Mohr, Y. Cheng, H. Lei, Y. Liu, X. Lin, P. Chen, R. Ruan, Influence of exogenous CO 2 on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater, Applied biochemistry and biotechnology, 166 (2012): 1661-1673 [CrossRef] [PubMed] [Google Scholar]
- L. Jiang, S. Luo, X. Fan, Z. Yang, R. Guo, Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2, Applied energy, 88, 10 (2011): 3336-3341 [CrossRef] [Google Scholar]
- B. Zhu, T. Xiao, H. Shen, Y. Li, X. Ma, Y. Zhao, K. Pan, Effects of CO2 concentration on carbon fixation capability and production of valuable substances by Spirulina in a columnar photobioreactor, Algal Research, 56 (2021): 102310 [CrossRef] [Google Scholar]
- R. Prasad, S.K. Gupta, N. Shabnam, C.Y.B. Oliveira, A.K. Nema, F.A. Ansari, F. Bux, Role of microalgae in global CO2 sequestration: Physiological mechanism, recent development, challenges, and future prospective, Sustainability, 13, 23 (2021): 13061 [CrossRef] [Google Scholar]
- J.A. Bassham, The path of carbon in photosynthesis, Scientific American, 206, 6 (1962): 88-104 [CrossRef] [Google Scholar]
- P.J.B. Williams, L.M.L. Laurens, Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics, Energy & environmental science, 3, 5 (2010): 554-590 [CrossRef] [Google Scholar]
- J.V Moroney, N. Jungnick, R.J. Dimario, D.J. Longstreth, Photorespiration and carbon concentrating mechanisms: two adaptations to high O 2, low CO 2 conditions, Photosynthesis research, 117 (2013): 121-131 [CrossRef] [PubMed] [Google Scholar]
- C. Durall, P. Lindblad, Mechanisms of carbon fixation and engineering for increased carbon fixation in cyanobacteria, Algal Research, 11 (2015): 263-270 [CrossRef] [Google Scholar]
- H. Zheng, Z. Gao, F. Yin, X. Ji, H. Huang, Effect of CO2 supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues, Bioresource technology, 126 (2012): 24-30 [CrossRef] [PubMed] [Google Scholar]
- N. Saifuddin, K. Aisswarya, Y.P. Juan, P. Priatharsini, Sequestration of high carbon dioxide concentration for induction of lipids in microalgae for biodiesel production, Journal of Applied Sciences, 15, 8 (2015): 1045 [CrossRef] [Google Scholar]
- H.H. Abd El Baky, G.S. El-baroty, A. Bouaid, Lipid induction in Dunaliella salina culture aerated with various levels CO2 and its biodiesel production, Journal of Aquaculture Research and Development, 5 (2014): 1-6 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.