Open Access
Issue
E3S Web Conf.
Volume 428, 2023
2023 Research, Invention, and Innovation Congress (RI2C 2023)
Article Number 02015
Number of page(s) 9
Section Technology for Environment and Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202342802015
Published online 14 September 2023
  1. Perfume Market size in India, https://www.prnewswire.com (2022) [Google Scholar]
  2. nsights Into India’s Fragrance Products Market, 2020: Pocket Perfumes Have Rose to Popularity, https://www.businesswire.com [Google Scholar]
  3. V.T. Seller, C.D. Brilliant, C. Morgan, S.P. Lewis, J. Duckers, F.A. Boy, P.D. Lewis, Anti-perspirant deodorant particulate matter temporal concentrations during home usage, Building and Environment, 195 (2021): 107738 [CrossRef] [Google Scholar]
  4. M. Ago, K. Ago, M. Ogata, A fatal case of n-butane poisoning after inhaling anti-perspiration aerosol deodorant, Legal Medicine, 4, 2 (2002): 113-118 [CrossRef] [Google Scholar]
  5. A. Steinemann, Fragranced consumer products: effects on asthmatics, Air Quality, Atmosphere and Health, 11, 1 (2018): 3-9 [CrossRef] [PubMed] [Google Scholar]
  6. A. Steinemann, International prevalence of fragrance sensitivity, Air Quality, Atmosphere and Health, 12, 8 (2019): 891-897 [CrossRef] [Google Scholar]
  7. J.H. Kim, T. Kim, H. Yoon, A. Jo, D. Lee, P. Kim, J. Seo, Health risk assessment of dermal and inhalation exposure to deodorants in Korea, Science of The Total Environment, 625, (2018): 1369-1379 [CrossRef] [Google Scholar]
  8. B. Bridges, Fragrance: Emerging health and environmental concerns, Flavour and Fragrance Journal, 17, 5 (2002): 361-371 [CrossRef] [Google Scholar]
  9. W. Wei, J.C. Little, O. Ramalho, C. Mandin, Predicting chemical emissions from household cleaning and personal care products: A review, Building and Environment, 207 (2022): 108483 [CrossRef] [Google Scholar]
  10. T. Wang, H. Zou, D. Li, J. Gao, Q. Bu, Z. Wang, Global distribution and ecological risk assessment of synthetic musks in the environment, Environmental Pollution, 331 (2023): 121893 [CrossRef] [Google Scholar]
  11. M.C. Martini, Déodorants et antitranspirants, Annales de Dermatologie et de Vénéréologie, 147, 5 (2020): 387-395 [CrossRef] [Google Scholar]
  12. Z. Kazemi, E. Aboutaleb, A. Shahsavani, M. Kermani, Z. Kazemi, Evaluation of pollutants in perfumes, colognes and health effects on the consumer: a systematic review, Journal of Environmental Health Science and Engineering, 20, 1 (2022): 589-598 [CrossRef] [Google Scholar]
  13. L.L.M. Modika, L. Matsheketsheke, J.R. Gumbo, Assessment of silver metal released into wastewater after using a silver deodorant, WIT Transactions on Ecology and the Environment, 228 (2018): 121-129 [CrossRef] [Google Scholar]
  14. G. Tjandraatmadja, C. Pollard, C. Sheedy, Y. Gozukara, Sources of contaminants in domestic wastewater : nutrients and additional elements from household products, Water for a Healthy Country Flagship Report: CSIRO, Canberra (2010) [Google Scholar]
  15. D. Missia, T. Kopanidis, J. Bartzis, G.V. Silva, E.D.O. Fernandes, P. Carrer, P. Wolkoff, M. Stranger, E. Goelen, Literature review on, product composition, emitted compounds and emissions rates and health end points from consumer products, (2010) [Google Scholar]
  16. M. Atiq, V.R.C. Sekar, Identification and estimation of phthalate esters in the commonly used deodorants in UAE by using HPTLC method, Gulf Medical University: Proceedings, 6, 5-6 (2014): 114-119 [Google Scholar]
  17. C.H. Lu, M.C. Fang, Y.Z. Chen, S.C. Huang, D.Y. Wang, Quantitative analysis of fragrance allergens in various matrixes of cosmetics by liquideliquid extraction and GCeMS, Journal of Food and Drug Analysis, 29, 4 (2021): 700 [CrossRef] [PubMed] [Google Scholar]
  18. Interest Group Environmental Chemistry, Emerging organic contaminants & antimicrobial resistance, CIBR, www.envchemgroup.com, Access on February 2018 [Google Scholar]
  19. P. Teerasumran, E. Velliou, S. Bai, Q. Cai, Deodorants and antiperspirants: New trends in their active agents and testing methods, International Journal of Cosmetic Science, (2023): 1-18 [PubMed] [Google Scholar]
  20. H. Cumming, C. Rücker, Octanol-Water Partition Coefficient Measurement by a Simple 1H NMR Method, ACS Omega, 2, 9 (2017): 6244-6249 [CrossRef] [PubMed] [Google Scholar]
  21. M. Odabasi, E. Cetin, A. Sofuoglu, Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas-particle partitioning in an urban atmosphere, Atmospheric Environment, 40, 34 (2006): 6615-6625 [CrossRef] [Google Scholar]
  22. M. Odabasi, B. Cetin, Determination of octanol-air partition coefficients of organochlorine pesticides (OCPs) as a function of temperature: Application to air-soil exchange, Journal of Environmental Management, 113 (2012): 432-439 [CrossRef] [PubMed] [Google Scholar]
  23. F. Wania, Potential of degradable organic chemicals for absolute and relative enrichment in the Arctic, Environmental Science and Technology, 40, 2 (2006): 569-577 [CrossRef] [PubMed] [Google Scholar]
  24. D. Muir, P.H. Howard, W. Meylan, Identification of new, possible PB&T substances important in the Great Lakes region by screening of chemicals in commerce, www.epa.gov, Access on May 2012 [Google Scholar]
  25. G. Hodges, C. Eadsforth, B. Bossuyt, A. Bouvy, M.H. Enrici, M. Geurts, M. Kotthoff, E. Michie, D. Miller, J. Müller, G. Oetter, J. Roberts, D. Schowanek, P. Sun, J. Venzmer, A comparison of log K ow (n-octanol-water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods, Environmental Sciences Europe, 31, 1 (2019): 1-18 [CrossRef] [Google Scholar]
  26. J. De Bruijn, F. Busser, W. Seinen, J. Hermens, Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the “slowstirring” method, Environmental Toxicology and Chemistry, 8, 6 (1989): 499-512 [CrossRef] [Google Scholar]
  27. B.C. Kelly, M.G. Ikonomou, J.D. Blair, A.E. Morin, F.A.P.C. Gobas, Food web-specific biomagnification of persistent organic pollutants, Science, 317, 5835 (2007): 236-239 [CrossRef] [PubMed] [Google Scholar]
  28. F.A.P.C. Gobas, B.C. Kelly, J.A. Arnot, Quantitative Structure Activity Relationships for Predicting the Bioaccumulation of POPs in Terrestrial Food-Webs, QSAR & Combinatorial Science, 22, 3 (2003): 329-336 [CrossRef] [Google Scholar]
  29. Q. Wang, R. He, J. Xu, F. Jin, Removal of 1, 4dioxane from wastewater by copper oxide catalyzed WAO with mild condition, in: E3S Web Conf., EDP Sciences, (2021): 01131 [CrossRef] [EDP Sciences] [Google Scholar]
  30. F.J.B. Rodriguez, Evaluation of 1, 4-dioxane biodegradation under aerobic and anaerobic conditions, Doctoral dissertation, Clemson University, (2016) [Google Scholar]
  31. M.A. Pearson, G.W. Miller, Benzyl Benzoate, (2014): 433-434 [Google Scholar]
  32. J. Kim, S. Xu, Quantitative structure-reactivity relationships of hydroxyl radical rate constants for linear and cyclic volatile methylsiloxanes, Environmental Toxicology and Chemistry, 36, 12 (2017): 3240-3245 [CrossRef] [PubMed] [Google Scholar]
  33. G. Rychen, G. Aquilina, G. Azimonti, V. Bampidis, M. de L. Bastos, G. Bories, A. Chesson, P.S. Cocconcelli, G. Flachowsky, B. Kolar, M. Kouba, M. López-Alonso, S.L. Puente, A. Mantovani, B. Mayo, F. Ramos, M. Saarela, R.E. Villa, R.J. Wallace, P. Wester, A.K. Lundebye, C. Nebbia, D. Renshaw, M.L. Innocenti, J. Gropp, Safety and efficacy of butylated hydroxyanisole (BHA) as a feed additive for all animal species, EFSA Journal, 16, 3 (2018): 5215 [Google Scholar]
  34. M. Bährle-Rapp, Diethyl Phthalate, Springer Lexikon Kosmetik und Körperpflege, (2007): 155155 [Google Scholar]
  35. Department of Climate Change, Energy, the Environment and Water, Styrene (ethenylbenzene), www.dcceew.gov.au, Access on 6 October 2021 [Google Scholar]
  36. O.I. Dar, R. Aslam, D. Pan, S. Sharma, M. Andotra, A. Kaur, A.Q. Jia, C. Faggio, Source, bioaccumulation, degradability and toxicity of triclosan in aquatic environments: A review, Environmental Technology & Innovation, 25 (2022): 102122 [CrossRef] [Google Scholar]
  37. K. Klotz, W. Weistenhöfer, F. Neff, A. Hartwig, C. Van Thriel, H. Drexler, The Health Effects of Aluminum Exposure, Deutsches Ärzteblatt International, 114, 39 (2017): 653 [Google Scholar]
  38. A. Pineau, B. Fauconneau, A.P. Sappino, R. Deloncle, O. Guillard, If exposure to aluminium in antiperspirants presents health risks, its content should be reduced, Journal of Trace Elements in Medicine and Biology, 28, 2 (2014): 147-150 [CrossRef] [PubMed] [Google Scholar]
  39. U. Bernauer, L. Bodin, Q. Chaudhry, P.J. Coenraads, M. Dusinska, J. Ezendam, E. Gaffet C.L. Galli, B. Granum, E. Panteri, V. Rogiers, OPINION ON the safety of Aluminium in cosmetic productsSubmission II, (2021): 0-136 [Google Scholar]
  40. Centers for Disease Control and Prevention, 1, 4Dioxane, www.cdc.gov, Access on 21 June 2019 [Google Scholar]
  41. Environmental Public Health, Oregon Health Authority : High Priority Chemicals of Concern for Children’s Health : Toxic Substances : State of Oregon, www.oregon.gov [Google Scholar]
  42. J. Huff, P.F. Infante, Styrene exposure and risk of cancer, Mutagenesis, 26, 5 (2011): 583 [CrossRef] [PubMed] [Google Scholar]
  43. P.M. Schlosser, A.S. Bale, C.F. Gibbons, A. Wilkins, G.S. Cooper, Human Health Effects of Dichloromethane: Key Findings and Scientific Issues, Environmental Health Perspectives, 123, 2 (2015): 114 [CrossRef] [PubMed] [Google Scholar]
  44. P.P. Phiboonchaiyanan, K. Busaranon, C. Ninsontia, P. Chanvorachote, Benzophenone-3 increases metastasis potential in lung cancer cells via epithelial to mesenchymal transition, Cell Biology and Toxicology, 33, 3 (2017): 251-261 [CrossRef] [PubMed] [Google Scholar]
  45. J.K. Aronson, Antiseptic drugs and disinfectants, Side Effects of Drugs Annual, 35 (2014): 435-445 [CrossRef] [Google Scholar]
  46. O. Health, A. Program, E.H. Section, Triclosan Technical Fact Sheet, http://www.ct.gov/dph, Access on January 2014 [Google Scholar]
  47. C. Disinfectant, R. Card, Disinfectant #14 : Chlorhexidine : Safe for humans, but at what risk to the environment ?, www.viroxanimalhealth.com [Google Scholar]
  48. T.Y. Lim, R.L. Poole, N.M. Pageler, Propylene Glycol Toxicity in Children, The Journal of Pediatric Pharmacology and Therapeutics : JPPT, 19, 4 (2014): 277 [CrossRef] [PubMed] [Google Scholar]
  49. J.L. Lyche, A.C. Gutleb, Å. Bergman, G.S. Eriksen, A.J. Murk, E. Ropstad, M. Saunders, J.U. Skaare, Reproductive and developmental toxicity of phthalates, Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 12, 4 (2009): 225-249 [Google Scholar]
  50. J.K. Hyun, M.L. Byung, Estimated exposure to phthalates in cosmetics and risk assessment, Journal of Toxicology and Environmental Health. Part A, 67, 23-24 (2004): 1901-1914 [CrossRef] [PubMed] [Google Scholar]
  51. J. Lincho, R.C. Martins, J. Gomes, Paraben Compounds-Part I: An Overview of Their Characteristics, Detection, and Impacts, Applied Sciences, 11, 5 (2021): 2307 [CrossRef] [Google Scholar]
  52. A. Wilson, The Mystery of Deodorant: What’s Really In There?, www.greenamerica.org (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.