Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01049
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202343001049
Published online 06 October 2023
  1. A. Thamrin, D. S. Arsyad, H. Kuswanto, A. Lawi, S. Nasir, PubMed Cent. 8, 669155 (2018) [Google Scholar]
  2. A. Jabarali, S. B. Sandhya, P. A. V. Priya, Intl. J. Creat. Res. Thoug 10, 3 (2022) [Google Scholar]
  3. E. Rodrígueza, E. Rodrígueza, L. Nascimentoa, A. Silva, F. Marinsa, J. Appli. Arti. Intelli 3, (2022) [Google Scholar]
  4. D. Molina, D. Hoz, F. Mendoza, J. Theor. Appli. Infor. Tech 99, 11 (2021) [Google Scholar]
  5. M. F. Anisat, F. D. Basaky, E. O. Osaghae, J. Appli. Arti. Intelli 3, 1 (2022) [Google Scholar]
  6. J. E. Wong, M. Yamaguchi, N. Nishi, M. Araki, L. H. Wee, J. Medic. Inter. Res, 6 (2022) [Google Scholar]
  7. Z. He, Comparison of Different Machine Learning Methods applied to Obesity Classification, in Proceedings of the 2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE), Guangzhou, China (2022) [Google Scholar]
  8. S. Garba, M. Abdullahi, U. A. Umar, N. T. Wurnor, Ind. J. Sci Tech 3 (2022) [Google Scholar]
  9. K. A. Pinto, N. L. Abdullah and P. Keikhosrokiani, Diet & Exercise Classification using Machine Learning to Predict Obese Patient’s Weight Loss, in Proceedings of the 2021 International Congress of Advanced Technology and Engineering (ICOTEN), Taiz, Yemen (2021) [Google Scholar]
  10. R. Kaur, R. Kumar, M. Gupta, Endocrine 76, 4 (2022) [Google Scholar]
  11. H. Correa, M. Palechor, H. Manotas, B. Adriana, J. Circ. Sys. Sig. Proce 15, (2019) [Google Scholar]
  12. F. Amani, A. Mohammadnia, P. Amani, A. Asl, M. Bahadoram, Teoflo Redondo 8 (2022) [Google Scholar]
  13. K. N. Devi, N. Krishnamoorthy, P. Jayanthi, S. Karthi, T. Karthik, K. Kiranbharath, Machine Learning Based Adult Obesity Prediction, in Proceedings of the 2022 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India (2022) [Google Scholar]
  14. R. P. Ram Kumar, S. Polepaka, Performance Comparison of Random Forest Classifier and Convolution Neural Network in Predicting Heart Diseases, in Proceedings of the Third International Conference on Computational Intelligence and Informatics, (eds) K. Raju, A. Govardhan, B. Rani, R. Sridevi, M. Murty, Advances in Intelligent Systems and Computing, 1090. Springer, Singapore (2020) [Google Scholar]
  15. R. P. Ram Kumar, P. Sanjeeva, S. F. Lazarus, D. V. Krishna, Intl. J. Inno. Tech. Explor. Engg 8, 11S2 (2019) [Google Scholar]
  16. A. Sankaridevi, R. P. Ram Kumar, R. Jayakumar, Intl. J. Recen. Tech. Engg 7, 5C (2019) [Google Scholar]
  17. R. P. Ram Kumar, R. Tabassum, Intl. J. Creat. Res. Thoug 6, 1 (2018) [Google Scholar]
  18. Brahma Rao, P. S. Varma, K. Raju, Rama M. V. Sundar, Intl. J. Manag. Tech. Engg 9, 1 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.