Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01058
Number of page(s) 20
DOI https://doi.org/10.1051/e3sconf/202343001058
Published online 06 October 2023
  1. Goel, Nidhi, and Priti Sehgal. 2015. Applied Soft Computing, 36, 45-56, (2015). [CrossRef] [Google Scholar]
  2. Kader, Adel A. 2002. Post-harvest technology of horticultural crops, University of Californi Agriculture and Natural Resources, 3311.. [Google Scholar]
  3. Mavridou, Efthimia, et al. “Machine vision systems in precision agriculture for crop farming.” Journal of Imaging, 5(12), 89, (2019). [CrossRef] [PubMed] [Google Scholar]
  4. Patrício, Diego Inácio, and Rafael Rieder. “Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review.” Computers and electronics in agriculture, 153, 69-81,(2018). [CrossRef] [Google Scholar]
  5. Moreira, Germano, et al. “Benchmark of deep learning and a proposed hsv color space models for the detection and classification of greenhouse tomato.” Agronomy 12(2),356, (2022). [CrossRef] [Google Scholar]
  6. Liu, Wei, et al. “Ssd: Single shot multi-box detector.” Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016. [Google Scholar]
  7. Redmon, Joseph, et al. “You only look once: Unified, real-time object detection.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.”. [Google Scholar]
  8. Wang, Xinfa, et al. “Online recognition and yield estimation of tomato in plant factory based on YOLOv3.” Scientific Reports 12(1),8686, (2022). [PubMed] [Google Scholar]
  9. Phan, Quoc-Hung, et al. “Classification of Tomato Fruit Using Yolov5 and Convolutional Neural Network Models”, 12(4),790, (2023). [Google Scholar]
  10. Rupareliya, Stavan & Jethva, Monil & Gajjar, Ruchi. (2022). Real-Time Tomato Detection, Classification, and Counting System Using Deep Learning and Embedded Systems. 10.1007/978- 981-16-2123-9_39.”. [Google Scholar]
  11. Moreira, Germano, et al. “Benchmark of deep learning and a proposed hsv color space models for the detection and classification of greenhouse tomato.” Agronomy 12(2), 356, (2022). [CrossRef] [Google Scholar]
  12. Lawal, Mubashiru Olarewaju. “Tomato detection based on modified YOLOv3 framework.” Scientific Reports 11(1), 1-11, (2021). [Google Scholar]
  13. Mu, Yue, et al. “Intact detection of highly occluded immature tomatoes on plants using deep learning techniques.” Sensors 20(10), 2984, (2020). [Google Scholar]
  14. de Luna, Robert G., et al. Journal of Agricultural Science 41(3), 586-596, (2019). [Google Scholar]
  15. de Luna, Robert G., et al. “Tomato growth stage monitoring for smart farm using deep transfer learning with machine learning-based maturity grading.” AGRIVITA, Journal of Agricultural Science 42(1), 24-36, (2020). [CrossRef] [Google Scholar]
  16. Afonso, Manya, et al.. Frontiers in plant science 11, 571299, (2020). [CrossRef] [PubMed] [Google Scholar]
  17. Dr. Gajula Ramesh, Dr. D. William Albert, Dr. Gandikota Ramu. (2020). International Journal of Advanced Science and Technology, 29(8), 1656 – 1664, (2020) [Google Scholar]
  18. D. Dusa and M. R. Gundavarapu, Smart Framework for Black Fungus Detection using VGG 19 Deep Learning Approach, 8th International Conference on Advanced Computing and Communication Systems (ICACCS),1023-1028, Coimbatore, India, (2022). [Google Scholar]
  19. P.ChandraSekhar Reddy, B. Eswara Reddy and V. Vijaya Kumar, International Journal of Image, Graphics and Signal Processing. 4, (2012). [Google Scholar]
  20. Gajula Ramesh, Anusha Anugu, Karanam Madhavi, P. Surekha, Automated Identification and Classification of Blur Images, Duplicate Images Using Open CV. In: Luhach A.K., Jat D.S., Bin Ghazali K.H., Gao XZ., Lingras P. (eds) Advanced Informatics for Computing Research. ICAICR 2020. Communications in Computer and Information Science, 1393. Springer, Singapore, (2020). [Google Scholar]
  21. Kumar, S.K., Reddy, P.D.K., Ramesh, G., Maddumala, V.R. Image transformation technique using steganography methods using LWT technique. Traitement du Signal, 36 (3) 233-237, (2019). https://doi.org/10.18280/ts.360305. [Google Scholar]
  22. Somasekar, J Ramesh, G, IJEMS, 29(6) [December 2022], NIScPR-CSIR, India, (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.