Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01080 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202343001080 | |
Published online | 06 October 2023 |
- Abdelaziz El Fazziki, Djamal Benslimane, Abderrahmane Sadiq, Jamal Ouarzazi, And Mohamed Sadgal, “An Agent Based Traffic Regulation System For The Roadside Air Quality Control”, Volume 5, 2017, Ieee Access,Digital Object Identifier 10.1109/Access.2017.2725984 [Google Scholar]
- Rady Purbakawaca (Graduate Student Member, Ieee), Arief Sabdo Yuwono, Dewa Made Subrata, Supandi And Husin Alatas, “Ambient Air Monitoring System With Adaptive Performance Stability”, Volume 10, 2022, Ieee Access, Digital Object Identifier 10.1109/ACCESS.2022.3222329 [Google Scholar]
- Jagriti Saini, Maitreyee Dutta and Gonçalo Marques, “Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review”, 2020,MDPI, Digital Object Identifier:10.3390/ijerph17144942 [Google Scholar]
- Qilong Han, Peng Liu, Haitao Zhang, And Zhipeng Cai, “A Wireless Sensor Network For Monitoring Environmental Quality In The Manufacturing Industry”, Volume 7, 2019, Ieee Access, Digital Object Identifier 10.1109/ACCESS.2019.2920838 [Google Scholar]
- Vanessa E. Alvear-Puertas, Yadira A. Burbano-Prado, Paul D. Rosero-Montalvo 3, Pınar Tözün, Fabricio Marcillo, And Wilmar Hernandez,” Smart and Portable Air-Quality Monitoring IoT Low-Cost Devices in Ibarra City, Ecuador”,2022, MDPI,Digital Object Identifier:10.3390/s22187015 [Google Scholar]
- ] Ning Liu, Xinyu Liu, Po-Ting Lin, Yue Wang, And Lin Zhang, “Enhanced Air Quality Inference Via Multi-View Learning With Mobile Sensing Memory”, Volume 10, 2022,Ieee Access, Digital Object Identifier 10.1109/ACCESS.2022.3164506 [Google Scholar]
- Bin Tian, Kun Mean Hou, Xunxing Diao, Hongling Shi, Haiying Zhou, and Wei Wang, “Environment-Adaptive Calibration System for Outdoor Low-Cost Electrochemical Gas Sensors”, Volume 7, 2019,Ieee Access, Digital Object Identifier 10.1109/ACCESS.2019.2916826 [Google Scholar]
- Martha Arbayani Zaidan, Yuning Xie, Naser Hossein Motlagh, Bo Wang, Wei Nie, Petteri Nurmi, Sasu Tarkoma, Tuukka Petäjä, Aijun Ding, and Markku Kulmala, “Dense Air Quality Sensor Networks: Validation, Analysis, and Benefits”, Volume 22, 2022, Ieee Access, Digital Object Identifier 10.1109/JSEN.2022.3216071 [Google Scholar]
- Georgi Tancev, Andreas Ackermann, Gerald Schaller, and Celine Pascale, “Efficient and Automated Generation of Orthogonal Atmospheres for the Characterization of Low-Cost Gas Sensor Systems in Air Quality Monitoring”, Volume 71, 2022, Ieee Access, Digital Object Identifier 10.1109/TIM.2022.3198747 [Google Scholar]
- Yuchao Zhou, Suparna De, Gideon Ewa, Charith Perera, and Klaus Moessner, “Data-Driven Air Quality Characterization for Urban Environments: A Case Study”, Volume 6, 2018, Ieee Access, Digital Object Identifier 10.1109/ACCESS.2018.2884647 [Google Scholar]
- Martha Arbayani Zaidan, Naser Hossein Motlagh, Pak Lun Fung, Abedalaziz S. Khalaf, Yutaka Matsumi, Aijun Ding, Sasu Tarkoma, Tuukka Petaja, Markku Kulmala, and Tareq Hussein, “Intelligent Air Pollution Sensors Calibration for Extreme Events and Drifts Monitoring”, Volume 19, 2023, Ieee Access, Digital Object Identifier 10.1109/TII.2022.3151782 [Google Scholar]
- Guyu Zhao, Guoyan Huang, Hongdou He, Jiadong Ren, and Haitao He, “Mining Key Stations by Constructing the Air Quality Spatial-Temporal Propagation Network”, Volume 8, 2020, Ieee Access, Digital Object Identifier 10.1109/ACCESS.2020.2997096 [Google Scholar]
- Zhibin Liu, Guangwen Wang, Liang Zhao, and Guangfei Yang, “Multi-Points Indoor Air Quality Monitoring Based on Internet of Things”, Volume 9, 2021, Ieee Access, Digital Object Identifier 10.1109/ACCESS.2021.3073681 [Google Scholar]
- Michael C. Mcdermott, William R. Barone, And Corey A. Kemper, “Proactive Air Management in CT Power Injections: A Comprehensive Approach to Reducing Air Embolization”,Volume 68,4, Ieee Access, Digital Object Identifier 10.1109/TBME.2020.3003131 [Google Scholar]
- Guyu Zhao, Guoyan Huang, Hongdou He, and Qian Wang, “Innovative Spatial-Temporal Network Modeling and Analysis Method of Air Quality”, Volume 7, 2019,Ieee Access, Digital Object Identifier 10.1109/ACCESS.2019.2900997 [Google Scholar]
- Yerragudipadu subbarayudu, alladi Sureshbabu “Distributed Multimodal Aspective on Topic Model Using Sentiment Analysis for Recognition of Public Health Surveillance” Expert Clouds and Applications, 16 July 2021, DOI: https://doi.org/10.1007/978-981-16-2126-0_38 Springer, Singapore Print ISBN 978-981-16-2125-3 Online ISBN 978-981-16-2126-0 [Google Scholar]
- Yerragudipadu Subbarayudu, Adithi Soppadandi, Shreya Vyamasani and Supriya Bandanadam, The Distributed Deep Learning Paradigms for Detection of Weeds from Crops in Indian Agricultural Farms, E3S Web of Conferences 391, 01057 (2023) https://doi.org/10.1051/e3sconf/202339101057 ICMED-ICMPC 2023. [Google Scholar]
- Subbarayudu Yerragudipadu, Vijendar Reddy Gurram, Navya Sri Rayapudi, Bhavana Bingi, Likhitha Gollapalli and Ukritha peddapatlolla, An Efficient Novel Approach on Machine Learning Paradigmsfor Food Delivery Company through Demand Forecastıng in societal community, E3S Web of Conferences 391, 01089 (2023) https://doi.org/10.1051/e3sconf/202339101089 ICMED-ICMPC 2023. [CrossRef] [EDP Sciences] [Google Scholar]
- Yerragudipadu Subbarayudu, G Vijendar Reddy, M Vamsi Krishna Raj, K Uday, MD Fasiuddin, and P Vishal, An efficient novel approach to E-commerce retail price optimization through machine learning, E3S Web of Conferences 391, 01104 (2023) https://doi.org/10.1051/e3sconf/202339101104 ICMED-ICMPC 2023. [CrossRef] [EDP Sciences] [Google Scholar]
- Subbarayudu, Y., Sureshbabu, A. (2023). A distributed densely connected convolutional network approach for enhanced recognition of health-related topics: A societal analysis case study. Ingénierie des Systèmes d’Information, Vol. 28, No. 3, pp. 677-684. https://doi.org/10.18280/isi.280317 [Google Scholar]
- Prasanna Lakshmi, K., Reddy, C.R.K. A survey on different trends in Data Streams (2010) ICNIT 2010 - 2010 International Conference on Networking and Information Technology, art. no. 5508473, pp. 451-455. [CrossRef] [Google Scholar]
- Jeevan Nagendra Kumar, Y., Spandana, V., Vaishnavi, V.S., Neha, K., Devi, V.G.R.R. Supervised machine learning Approach for crop yield prediction in agriculture sector (2020) Proceedings of the 5th International Conference on Communication and Electronics Systems, ICCES 2020, art. no. 09137868, pp. 736-741. [Google Scholar]
- Sankara Babu, B., Suneetha, A., Charles Babu, G., Jeevan Nagendra Kumar, Y., Karuna, G. Medical disease prediction using grey wolf optimization and auto encoder based recurrent neural network (2018) Periodicals of Engineering and Natural Sciences, 6 (1), pp. 229-240. [CrossRef] [Google Scholar]
- Nagaraja, A., Boregowda, U., Khatatneh, K., Vangipuram, R., Nuvvusetty, R., Sravan Kiran, V. Similarity Based Feature Transformation for Network Anomaly Detection (2020) IEEE Access, 8, art. no. 9006824, pp. 39184-39196. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.