Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01093 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202343001093 | |
Published online | 06 October 2023 |
- Bui Van Hieu et al 2011 Wireless Transmission of Acoustic Emission Signals for Real-time Monitoring of Leakage in Underground Pipes KSCE J. Civ. Eng. 15(5) pp 805–812. [Google Scholar]
- Zheng Liu and Yehuda Kleiner 2012 State-of-the-art Review of Technologies for Pipe Structural Health Monitoring IEEE Sens. J. 12(6) pp 1987–1992. [CrossRef] [Google Scholar]
- Gao Y et al 2005 On the Selection of Acoustic/Vibration Sensors for Leak Detection in Plastic Water Pipes J. Sound Vib. 283(3-5) pp 927-941. [CrossRef] [Google Scholar]
- Ali M Sadeghioon et al 2014 Smart Pipes: Smart Wireless Sensor Networks for Leak Detection in Water Pipelines J. Sens. Actuator Netw. 3 pp 64-78. [CrossRef] [Google Scholar]
- Ria Sood et al 2013 Design and Development of Automatic Waterflow Meter Int. J. Comput. Sci. Eng. 3(3) pp 49-59. [Google Scholar]
- Jayalakshmi M and Gomathi V 2015 An Enhanced Underground Pipeline Water Leakage Monitoring and Detection System Using Wireless Sensor Network Int. Conf. on Soft-Computing and Networks Security pp 1-6. [Google Scholar]
- Dalius Misiunas et al 2005 Pipeline Break Detection using Pressure Transient Monitoring J. Water Resour. Plan. Manag. 131(4). [Google Scholar]
- Abdulfattah M Obeid et al 2016 Towards Realisation of Wireless Sensor Network-based Water Pipeline Monitoring Systems: A Comprehensive Review of Techniques and Platforms IET Sci. Meas. Technol. 10(5) pp 420-426. [Google Scholar]
- Demma. A et al 2003 The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes J. Acoust. Soc. Am. 114(2) pp 611-625. [CrossRef] [PubMed] [Google Scholar]
- Bakker M et al 2014 Heuristic Burst Detection Method using Flow and Pressure Measurements J. Hydroinformatics 16:1194. [CrossRef] [Google Scholar]
- Qiang Xu et al 2013 Optimal Pipe Replacement Strategy based on Break Rate Prediction through Genetic Programming for Water Distribution Network J. Hydro-Environ Res. 7 pp 134–140. [CrossRef] [Google Scholar]
- Rahmat R F et al 2016 Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor IOP Conf. Ser.: Mater. Sci. Eng. 190. [Google Scholar]
- A. Johnson and J. Burton, “Water torture: 3,300,000,000 litre sare lost every single day through leakage,” The Independent, 2010. [Google Scholar]
- I. Stoianov, L. Nachman, S. Madden, T. Tokmouline, and M. Csail, “Pipenet: A wireless sensor network for pipeline monitoring,” in Proc. IPSN, 2007, pp. 264–273. [Google Scholar]
- B. Aghaei, “Using wireless sensor network in water, electricity and gas industry,” in Proc. IEEE ICECT, vol. 2, 2011, pp.14–17. [Google Scholar]
- A. Santos and M. Younis, “A sensor network for nonintrusive and efficient leak detection in long pipelines,” in Proc. IEEE WD, 2011, pp. 1–6. [Google Scholar]
- Z. Wang, X. Hao, and D. Wei, “Remote water quality monitoring system based on wsn and gprs,” Instrument Techniqueand Sensor, vol. 1, p. 018, 2010. [Google Scholar]
- M. Allen, A. Preis, M. Iqbal, and A. J. Whittle, “Waterdistribution system monitoring and decision support using awireless sensor network,” in Proc. IEEE SNPD, 2013, pp.641–646. [Google Scholar]
- A. Krause and C. Guestrin, “Sub modularity and its applications in optimized information gathering,” ACM Trans. Intell.Syst. Technol., vol. 2, no. 4, p. 32, 2011. [CrossRef] [Google Scholar]
- S. Guha, P. Basu, C.-K.Chau, and R. Gibbens, “Green wave sleep scheduling: Optimizing latency and throughput in duty cycling wireless networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1595–1604, Sep. 2011. [CrossRef] [Google Scholar]
- G. Wei, Y. Ling, B. Guo, B. Xiao, and A. V. Vasilakos, “Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman filter,” Comput. Commun., vol. 34, no. 6, pp. 793–802, 2011. [CrossRef] [Google Scholar]
- Praveen M Dhulavvagol et al 2018 An Enhanced Water Pipeline Monitoring System in Remote Areas using Flow Rate and Vibration Sensors Int. Conf. on Cognitive Computing and Information Processing pp 331-345. [Google Scholar]
- Prasanna Lakshmi, K., Reddy, C.R.K. A survey on different trends in Data Streams (2010) ICNIT 2010 - 2010 International Conference on Networking and Information Technology, art. no. 5508473, pp. 451-455. [Google Scholar]
- Jeevan Nagendra Kumar, Y., Spandana, V., Vaishnavi, V.S., Neha, K., Devi, V.G.R.R. Supervised machine learning Approach for crop yield prediction in agriculture sector (2020) Proceedings of the 5th International Conference on Communication and Electronics Systems, ICCES 2020, art. no. 09137868, pp. 736-741. [Google Scholar]
- Sankara Babu, B., Suneetha, A., Charles Babu, G., Jeevan Nagendra Kumar, Y., Karuna, G. Medical disease prediction using grey wolf optimization and auto encoder based recurrent neural network (2018) Periodicals of Engineering and Natural Sciences, 6 (1), pp. 229-240. [CrossRef] [Google Scholar]
- Nagaraja, A., Boregowda, U., Khatatneh, K., Vangipuram, R., Nuvvusetty, R., Sravan Kiran, V. Similarity Based Feature Transformation for Network Anomaly Detection (2020) IEEE Access, 8, art. no. 9006824, pp. 39184-39196. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.