Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01096 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202343001096 | |
Published online | 06 October 2023 |
- K. Aravindhan, S. K. B. Sangeetha, K. Periyakaruppan, K. P. Keerthana, V. SanjayGiridhar and V. Shamaladevi “Design of Attendance Monitoring System Using RFID” 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2021. [Google Scholar]
- S H V K Ashok, N DishniDivya, Fredrick Samuel, Prof. Dr. Uttam Mande “RFID Based Attendance System” International Journal for Research in Applied Science & Engineering Technology (IJRASET), Volume 10 Issue XII Dec 2022. [Google Scholar]
- H. K. Nguyen and M. T. Chew, “RFID-based attendance management system,” 2017 2nd Workshop on Recent Trends in Telecommunications Research (RTTR), Palmerston North, New Zealand, 2017, pp. 1-6, doi: 10.1109/RTTR.2017.7887874. [Google Scholar]
- A. Jinushia R., S. Senthilkumar, S. Bhuvaneswari and E. Clapton, “Smart Monitoring System using RFID Technology,” 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2020, pp. 1430-1433, doi: 10.1109/ICACCS48705.2020.9074448. [Google Scholar]
- Darwin C. Mangca, “Enhanced Attendance Monitoring: Utilizing QR Code for Online Attendance with Laravel Framework and SMS Notification”, International Journal of Advanced Research in Science, Communication and Technology, pp.237, 2023. [Google Scholar]
- K Balakrishna, B R Ganesh Prasad, N D Dhanyashree, V Balaji, N M Krishna, “IoT based Class Attendance Monitoring System using RFID and GSM”, 2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC), pp.1-5, 2021. [Google Scholar]
- L. Shi and Q. Li, “An attendance system design based on RFID technology,” 2020 8th International Conference on Orange Technology (ICOT), Daegu, Korea (South), 2020, pp. [Google Scholar]
- U. Koppikar, S. Hiremath, A. Shiralkar, A. Rajoor and V. P. Baligar, “IoT based Smart Attendance Monitoring System using RFID,” 2019 1st International Conference on Advances in Information Technology (ICAIT), Chikmagalur, India, 2019, pp. 193-197, doi: 10.1109/ICAIT47043.2019.8987263. [CrossRef] [Google Scholar]
- S. N. Shah and A. Abuzneid, “IoT Based Smart Attendance System (SAS) Using RFID,” 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 2019. [Google Scholar]
- P. Kovelan, N. Thisenthira and T. Kartheeswaran, “Automated Attendance Monitoring System Using IoT,” 2019 International Conference on Advancements in Computing (ICAC), Malabe, Sri Lanka, 2019, pp. [Google Scholar]
- Anurag Shrivastava, S. J. Suji Prasad, Ajay Reddy Yeruva, P. Mani, Pooja Nagpal, Abhay Chaturvedi, “IoT Based RFID Attendance Monitoring System of Students using Arduino ESP8266 & Adafruit.io on Defined Area”, Cybernetics and Systems, pp.1, 2023. [Google Scholar]
- A. A. Radhi and F. M. Al-Naima, “A proposed prototype design of a student attendance system based on a combined RFID -WSN technology,” 3rd Smart Cities Symposium (SCS 2020), Online Conference, 2020, pp. 516-520, doi: 10.1049/icp.2021.0932. [Google Scholar]
- A. Chomklin, L. N. Nongkhai and P. Padungpattanadis, “Class Attendance Recording using QR Code via Smartphone,” 2019 4th International Conference on Information Technology (InCIT), Bangkok, Thailand, 2019, pp. 173-178, doi: 10.1109/INCIT.2019.8912099. [CrossRef] [Google Scholar]
- I. Meghana, J. D. N. V. L. Meghana and R. Jayaraman, “Smart Attendance Management System using Radio Frequency Identification,” 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 2020, pp. 1045-1049, doi: 10.1109/ICCSP48568.2020.9182167. [Google Scholar]
- F. R. Basthomi et al., “Implementation of RFID Attendance System with Face Detection using Validation Viola-Jones and Local Binary Pattern Histogram Method,” 2019 International Symposium on Electronics and Smart Devices (ISESD), Badung, Indonesia, 2019, pp. 1-6, doi: 10.1109/ISESD.2019.8909430. [Google Scholar]
- Yerragudipadu subbarayudu, alladi Sureshbabu “Distributed Multimodal Aspective on Topic Model Using Sentiment Analysis for Recognition of Public Health Surveillance” Expert Clouds and Applications, 16 July 2021, DOI: https://doi.org/10.1007/978-981-16-2126-0_38 [Google Scholar]
- Yerragudipadu Subbarayudu, Adithi Soppadandi, Shreya Vyamasani and Supriya Bandanadam1, The Distributed Deep Learning Paradigms for Detection of Weeds from Crops in Indian Agricultural Farms, E3S Web of Conferences 391, 01057 (2023) https://doi.org/10.1051/e3sconf/202339101057 ICMED-ICMPC 2023. [Google Scholar]
- Subbarayudu Yerragudipadu, Vijendar Reddy Gurram, Navya Sri Rayapudi, Bhavana Bingi, Likhitha Gollapalli1 and Ukritha Peddapatlolla, An Efficient Novel Approach on Machine Learning Paradigmsfor Food Delivery Company through Demand Forecastıng in societal community, E3S Web of Conferences 391, 01089 (2023) https://doi.org/10.1051/e3sconf/202339101089 ICMED-ICMPC 2023. [CrossRef] [EDP Sciences] [Google Scholar]
- Yerragudipadu Subbarayudu, G Vijendar Reddy, M Vamsi Krishna Raj, K Uday, MD Fasiuddin, and P Vishal, An efficient novel approach to E-commerce retail price optimization through machine learning, E3S Web of Conferences 391, 01104 (2023) https://doi.org/10.1051/e3sconf/202339101104 ICMED-ICMPC 2023. [CrossRef] [EDP Sciences] [Google Scholar]
- Subbarayudu, Y., Sureshbabu, A. (2023). A distributed densely connected convolutional network approach for enhanced recognition of health-related topics: A societal analysis case study. Ingénierie des Systèmes d’Information, Vol. 28, No. 3, pp. 677-684. https://doi.org/10.18280/isi.280317 [Google Scholar]
- Prasanna Lakshmi, K., Reddy, C.R.K. A survey on different trends in Data Streams (2010) ICNIT 2010 - 2010 International Conference on Networking and Information Technology, art. no. 5508473, pp. 451-455. [Google Scholar]
- Jeevan Nagendra Kumar, Y., Spandana, V., Vaishnavi, V.S., Neha, K., Devi, V.G.R.R. Supervised machine learning Approach for crop yield prediction in agriculture sector (2020) Proceedings of the 5th International Conference on Communication and Electronics Systems, ICCES 2020, art. no. 09137868, pp. 736-741. [Google Scholar]
- Sankara Babu, B., Suneetha, A., Charles Babu, G., Jeevan Nagendra Kumar, Y., Karuna, G. Medical disease prediction using grey wolf optimization and auto encoder based recurrent neural network (2018) Periodicals of Engineering and Natural Sciences, 6 (1), pp. 229-240. [CrossRef] [Google Scholar]
- Nagaraja, A., Boregowda, U., Khatatneh, K., Vangipuram, R., Nuvvusetty, R., Sravan Kiran, V. Similarity Based Feature Transformation for Network Anomaly Detection (2020) IEEE Access, 8, art. no. 9006824, pp. 39184-39196. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.