Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01151 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/e3sconf/202343001151 | |
Published online | 06 October 2023 |
- Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Accessed on Apr 27, 2023. Available online: https://www.cdc.gov/diabetes/library/features/diabetes-stat- report.html [Google Scholar]
- Ramachandran A, Snehalatha C, Shetty AS, Nanditha A. Trends in the prevalence of Diabetes in Asian countries. World J Diabetes. 2012 Nov 15;3(11):110-7. [CrossRef] [Google Scholar]
- Pima Indians Diabetes Dataset. UCI Machine Learning Repository. Accessed on Apr 27, 2023. Available online: https://archive.ics.uci.edu/ml/datasets/pima+indians+diabetes [Google Scholar]
- Breiman L. Random forests. Machine Learning. 2001;45(1):5-32. [CrossRef] [Google Scholar]
- Alghamdi AS, Alsolami FJ, Alghamdi MA. Predictive modelling of Diabetes risk using machine learning techniques. J Infect Public Health. 2019 Jul-Aug;12(4):506-512. [Google Scholar]
- Islam MM, Yang HC, Poly TN, Jian WS, Jack Li YC. Diabetes prediction models: a systematic review. Diabetes Res Clin Pract. 2020 Feb;160:108025. [CrossRef] [Google Scholar]
- Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I. Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J. 2017 Feb 18;15:104-116. [CrossRef] [Google Scholar]
- M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science, 1989. [Google Scholar]
- Wang, Qian, Weijia Cao, Jiawei Guo, Jiadong Ren, Yongqiang Cheng, and Darryl N. Davis. “DMP_MI: an effective diabetes mellitus classification algorithm on imbalanced data with missing values.” IEEE Access 7 (2019): 102232-102238. [CrossRef] [Google Scholar]
- Montaser, Eslam, José-Luis Díez, Paolo Rossetti, Mudassir Rashid, Ali Cinar, and Jorge Bondia. “Seasonal local models for glucose prediction in type 1 diabetes.” IEEE Journal of Biomedical and health informatics 24, no. 7 (2019): 2064-2072. [Google Scholar]
- Fazakis, Nikos, Otilia Kocsis, Elias Dritsas, Sotiris Alexiou, Nikos Fakotakis, and Konstantinos Moustakas. “Machine learning tools for long-term type 2 diabetes risk prediction.” IEEE Access 9 (2021): 103737-103757. [CrossRef] [Google Scholar]
- Vettoretti, Martina, Andrea Facchinetti, Giovanni Sparacino, and Claudio Cobelli. “Type-1 diabetes patient decision simulator for in silico testing safety and effectiveness of insulin treatments.” IEEE Transactions on Biomedical Engineering 65, no. 6 (2017): 1281-1290. [Google Scholar]
- Sisodia, Deepti, and Dilip Singh Sisodia. “Prediction of diabetes using classification algorithms.” Procedia computer science 132 (2018): 1578-1585. [CrossRef] [Google Scholar]
- Zou, Quan, Kaiyang Qu, Yamei Luo, Dehui Yin, Ying Ju, and Hua Tang. “Predicting diabetes mellitus with machine learning techniques.” Frontiers in Genetics 9 (2018): 515. [CrossRef] [PubMed] [Google Scholar]
- Sarwar, Muhammad Azeem, Nasir Kamal, Wajeeha Hamid, and Munam Ali Shah. “Prediction of diabetes using machine learning algorithms in healthcare.” In 2018 24th international conference on Automation and Computing (ICAC), pp. 1-6. IEEE, 2018. [Google Scholar]
- Mujumdar, Aishwarya, and V. Vaidehi. “Diabetes prediction using machine learning algorithms.” Procedia Computer Science 165 (2019): 292-299. [CrossRef] [Google Scholar]
- Hasan, Md Kamrul, Md Ashraful Alam, Dola Das, Eklas Hossain, and Mahmudul Hasan. “Diabetes prediction using ensembling of different machine learning classifiers.” IEEE Access 8 (2020): 76516-76531. [CrossRef] [Google Scholar]
- Patil, Ratna, and Sharavari Tamane. “A comparative analysis on the evaluation of classification algorithms in the prediction of diabetes.” International Journal of Electrical and Computer Engineering 8, no. 5 (2018): 3966-3975. [Google Scholar]
- Rahman, Mosiur, Md Rafiqul Islam, Sharmin Akter, Shanjita Akter, Linta Islam, and Guandong Xu. “Diavis: Exploration and analysis of diabetes through the interactive visual system.” Human-Centric Intelligent Systems 1, no. 3-4 (2021): 75-85. [Google Scholar]
- Longato, Enrico, Gian Paolo Fadini, Giovanni Sparacino, Angelo Avogaro, Lara Tramontan, and Barbara Di Camillo. “A deep learning approach to predict diabetes’ cardiovascular complications from administrative claims.” IEEE Journal of Biomedical and Health Informatics 25, no. 9 (2021): 3608-3617. [CrossRef] [PubMed] [Google Scholar]
- Ferdousi, Rahatara, M. Anwar Hossain, and Abdulmotaleb El Saddik. “Early-stage risk prediction of non-communicable disease using machine learning in health CPS.” IEEE Access 9 (2021): 96823-96837. [CrossRef] [Google Scholar]
- Sivakumar, S. A., Tegil J. John, Thamarai G. Selvi, Bhukya Madhu, C. Udhaya Shankar, and K. P. Arjun. “IoT-based Intelligent Attendance Monitoring with Face Recognition Scheme.” In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), pp. 349-353. IEEE, 2021. [Google Scholar]
- Alehegn, Minyechil, Rahul Joshi, and Preeti Mulay. “Analysis and prediction of diabetes mellitus using a machine learning algorithm.” International Journal of Pure and Applied Mathematics 118, no. 9 (2018): 871-878. [Google Scholar]
- Vigneswari, D., N. Komal Kumar, V. Ganesh Raj, A. Gugan, and S. R. Vikash. “Machine learning tree classifiers in predicting diabetes mellitus.” In 2019 5th international conference on advanced computing & communication systems (ICACCS), pp. 84-87. IEEE, 2019. [Google Scholar]
- S. Sivaranjani, S. Ananya, J. Aravinth and R. Karthika, “Diabetes Prediction using Machine Learning Algorithms with Feature Selection and Dimensionality Reduction,” In 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), IEEE 2021. [Google Scholar]
- Madhu, Bhukya, M. Venu Gopala Chari, Ramdas Vankdothu, Arun Kumar Silivery, and Veerender Aerranagula. “Intrusion detection models for IOT networks via deep learning approaches.” Measurement: Sensors 25 (2023): 100641. [CrossRef] [Google Scholar]
- P. Sonar and K. JayaMalini, “Diabetes Prediction Using Different Machine Learning Approaches,” In 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), IEEE, 2019. [Google Scholar]
- Vijayan, V. Veena, and C. Anjali. “Prediction and diagnosis of diabetes mellitus—A machine learning approach.” In 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS), pp. 122-127. IEEE, 2015 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.