Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01160 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202343001160 | |
Published online | 06 October 2023 |
- Q. Mei, M. Gül, M.R. Azim, Densely connected deep neural network consideringconnectivity of pixels for automatic crack detection. Automationin Construction 110, 103018 (2020). [CrossRef] [Google Scholar]
- C.V.Dung, et al., Autonomous concrete crack detection using deepfully convolutional neural network. Automation in Construction 99, 52–58 (2019). [CrossRef] [Google Scholar]
- L.Li,W.Luo, K.C.Wang, Lane marking detection and reconstructionwith line-scan imaging data. Sensors 18(5), 1635 (2018). [CrossRef] [PubMed] [Google Scholar]
- S.Bang, S.Park, H.Kim, H.Kim,Encoder–decoder network for pixel- level road crack detection in black-box images. Computer-Aided Civil and Infrastructure Engineering 34(8), 713–727 (2019). [CrossRef] [Google Scholar]
- H.Bello-Salau, A.Aibinu,, E.Onwuka, J.Dukiya, A.Onumanyi, Image processing techniques for automated road defect detection: A survey. In: 2014 11th International Conference on Electronics, Computer and Computation (ICECCO). pp. 1–4. IEEE (2014). [Google Scholar]
- A.Zhang, K.C.Wang, B.Li, E.Yang, Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q., Chen, C.: Automated pixel-level pavement crack detection on 3d asphalt surfaces using a deep-learning network. Computer-Aided Civil and Infrastructure Engineering 32(10), 805–819 (2017). [CrossRef] [Google Scholar]
- J.Dharneeshkar, S.Aniruthan, R.Karthika, L.Parameswaran et al.,Deep learning based detection of potholes in indian roads using yolo.In: 2020 international conference on inventive computation technologies(ICICT). pp. 381–385. IEEE (2020). [Google Scholar]
- S.Colagrande, D.Ranalli, M.Tallini, Gpr research on damaged roadpavements built in cut and fill sections. Transportation Research Procedia 45, 30–37 (2020). [CrossRef] [Google Scholar]
- E.Aldea, S.Le Hégarat-Mascle, Robust crack detection for unmannedaerial vehicles inspection in an a-contrario decision framework. Journal ofElectronic Imaging 24(6), 061119–061119 (2015). [Google Scholar]
- Survey on Machine Learning with Cloud Technology Preserving Privacy: Risks and KeysH Bommala, J Bhargav, VR Yanamadni, N Srinivas… - Solid State Technology, 2021. [Google Scholar]
- V.Mazzia, F.Daneshgaran, M.Mondin, Use of deep learning for automatic detection of cracks in tunnels. Progresses in artificial intelligence andneural systems, 91–101, (2021). [Google Scholar]
- Z. Guo, Y. Huang, X. Hu, H. Wei, B. Zhao, A survey on deep learningbased approaches for scene understanding in autonomous driving. Electronics 10(4), 471 (2021). [CrossRef] [Google Scholar]
- S. Masihullah, R. Garg, P. Mukherjee, A. Ray, Attention based coupledframework for road and pothole segmentation. In: 2020 25th InternationalConference on Pattern Recognition (ICPR), 5812–5819, IEEE (2021). [Google Scholar]
- R. Rastogi, U. Kumar, A. Kashyap, S. Jindal, S. Pahwa, A comparativeevaluation of the deep learning algorithms for pothole detection. In: 2020IEEE 17th India Council International Conference (INDICON). 1–6, IEEE (2020). [Google Scholar]
- X. Sun, Y. Xie, L. Jiang, Y. Cao, B. Liu,Dma-net: Deeplab withmulti-scale attention for pavement crack segmentation. IEEE Transactionson Intelligent Transportation Systems 23(10), 18392–18403 (2022). [CrossRef] [Google Scholar]
- H. Yao, Y. Liu, X. Li, Z. You, Y. Feng, W. Lu,A detection methodfor pavement cracks combining object detection and attention mechanism.IEEE Transactions on Intelligent Transportation Systems 23(11), 22179–22189 (2022). [CrossRef] [Google Scholar]
- R. Fan, U. Ozgunalp, Y. Wang, M. Liu, I. Pitas, Rethinking Road surface 3-d reconstruction and pothole detection: From perspective transformation to disparity map segmentation. IEEE Transactions on Cybernetics 52(7), 5799–5808 (2021). [Google Scholar]
- D. Dhital, J.R. Lee,A fully non-contact ultrasonic propagation imagingsystem for closed surface crack evaluation. Experimental mechanics 52,1111–1122 (2012). [CrossRef] [Google Scholar]
- N. Kheradmandi, V. Mehranfar, A critical review and comparative study on image segmentation-based techniques for pavement crack detection. Construction and Building Materials 321, 126162 (2022). [CrossRef] [Google Scholar]
- M.A.M. Khan, M.F. Haque, K.R. Hasan, S.H. Alajmani, M.Baz, M. Masud, A.A. Nahid, Lldnet: A lightweight lane detection approach forautonomous cars using deep learning. Sensors 22(15), 5595 (2022). [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.