Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01179
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202343001179
Published online 06 October 2023
  1. Yong-Jai Kwon, Seong-Beom Shim, Dong-Hwan Park, “Friction stir welding of 5052 aluminum alloy plates”, Trans. Nonferrous Met. Soc. China 19 s23−s27 (2009). [CrossRef] [Google Scholar]
  2. J. Adamowski, C. Gambaro, E. Lertora, M. Ponte, M. Szkodo, “analysis of FSW welds made of Aluminium alloy AW 6082-T6”, Archives of Materials Science and Engineering, Volume 28, Issue 8(2007). [Google Scholar]
  3. Shigematsu I, Kwon Y J, Suzuki K, Imai T, Saito N., Joining of 5083 and 6061 aluminum alloys by friction stir welding, J Mater Sci Lett, 22(5): 353−356 (2003). [CrossRef] [Google Scholar]
  4. Shigematsu I, Suzuki K, Imai T, Kwon Y J, Saito N., Friction stir welding of recycled A6061 aluminum plates fabricated by hot-extrusion of machined chips. J Mater Sci, 40(11):2971−2974 (2005). [CrossRef] [Google Scholar]
  5. Kannan M B, Dietzel W, Zeng R, Zettler R, Santos J F D., A study on the SCC susceptibility of friction stir welded AZ31 Mg sheet. Mater Sci Eng A, 460/461: 243−250 (2007). [CrossRef] [Google Scholar]
  6. Darras B M, Khraisheh M K, Abu-Farha F K, Omar M A. Friction stir processing of commercial AZ31 magnesium alloy. J Mater Proc Tech, 191(1/3): 77−81 (2007). [CrossRef] [Google Scholar]
  7. R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia; “Recent Advances in Friction Stir Welding – Process”, Weldment Structure and Properties, Progress in Materials Science 53 (2008) 980-1023. [CrossRef] [Google Scholar]
  8. Mohamed Merzoug, Mohamed Mazari, Lahcene Berrahal, Abdellatif Imad, “Parametric studies of the process of friction spot stir welding of Aluminium 6060-T5 alloys”, Materials and Design 31 (2010) 3023–3028. [CrossRef] [Google Scholar]
  9. S. G. Arul, S. F. Miller, G. H. Kruger, T.-Y. Pan, P. K. Mallick and A. J. Shih. “Experimental study of joint performance in spot friction welding of 6111-T4 Aluminium alloy”, Science and Technology of Welding and Joining 2008 Volume 13 issue 7 (2008) 629-637. [CrossRef] [Google Scholar]
  10. M. Koilraj, V. Sundareswaran, S. Vijayan, S.R. Koteswara Rao, “Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083-Optimization of process parameters using Taguchi technique”, Materials and Design, Vol 42, pp1-7 (2012). [CrossRef] [Google Scholar]
  11. Yahya Bozkurt, “The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets”, Material and Design, Vol 35, pp 440-445 (2012). [CrossRef] [Google Scholar]
  12. Lee WB, Lee CY, Chang WS, Yeon YM, Jung SB. Microstructural investigation of friction stir welded pure titanium. Mater Lett 59:3315–8 (2005). [CrossRef] [Google Scholar]
  13. Priya R, Subramanya Sarma V, Prasad Rao K. Effect of post weld heat treatment on the microstructure and tensile properties of dissimilar friction stir welded AA 2219 and AA 6061 alloys. Trans Indian Inst Met 62:11–9 (2009). [CrossRef] [Google Scholar]
  14. Shigematsu I, Kwon YJ, Suzuki K, Imai T, Satio N. Joining of 5083 and 6061 aluminum alloys by friction stir welding. J Mater Sci Lett 22:353–6 (2003). [CrossRef] [Google Scholar]
  15. Ouyang JH, Kovacevic R. Material flow during friction stir welding (FSW) of the same and dissimilar aluminum alloys. J Mater Eng Perform 11(1):51–63 (2002). [CrossRef] [Google Scholar]
  16. G. Elatharasan, V.S. Senthil Kumar, “An experimental analysis and optimization of process parameters on friction stir welding of AA6061-T6 aluminum alloy using RSM”, Proceedia Engineering, Vol 64, pp 1227-1234 (2013). [Google Scholar]
  17. Cho JH, Boyce DE, Dawson PR. Modeling strain hardening and texture evolution in friction stir welding of stainless steel. Mater Sci Eng A 398:146–63 (2005). [CrossRef] [Google Scholar]
  18. Liu H, Fulii H, Maeda M, Nogi K. Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminium alloy. J Mater Sci Lett; 22:1061–3 (2003). [CrossRef] [Google Scholar]
  19. Lapasset G, Denquin A. Midling. Metall Mater Trans A 32A:1189 (2001). [Google Scholar]
  20. K. Kumar, S. Kumar, M. Gupta and H.C. Garg, Ind. Lubr. Tribol. 70, 1721-1728 (2018) [CrossRef] [Google Scholar]
  21. K. Kumar, S. Kumar, G.Singh, J. P. Singh, J.Singh, Coatings 7, 54(2017). [CrossRef] [Google Scholar]
  22. K. Kumar, Int. J. Appl. Mech. 25, 202-210 (2020). [CrossRef] [Google Scholar]
  23. Bala Srinivasan P, Dietzel W, Zettler R, dos Santos JF, Sivan V. Stress corrosion cracking susceptibility of friction stir welded AA7075–AA6056 dissimilar joint. Mater Sci Eng A 392:292–300 (2005). [CrossRef] [Google Scholar]
  24. Amancio-Filho ST, Sheikhi S, dos Santos JF, Bolfarini C. Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4. J Mater Process Technol 206:132–42 (2008). [CrossRef] [Google Scholar]
  25. Khodir SA, Shibayanagi T. Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys. Mater Sci Eng B 148:82–7 (2008). [CrossRef] [Google Scholar]
  26. Cavaliere P, De Santis A, Panella F, Squillace A. Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Mater Des 30:609–16 (2009). [CrossRef] [Google Scholar]
  27. H. J. Liu, H. Fujii, K. Nogi, Friction stir welding characteristics of 2017-T351 aluminum alloy sheet, Journal of materials science 40, 3297 – 3299 (2005). [CrossRef] [Google Scholar]
  28. Lee WB, Yeon YM, Jung SB. The joint properties of dissimilar formed Al alloys by friction stir welding according to the fixed location of materials. Scripta Mater 49:423–8 (2003). [CrossRef] [Google Scholar]
  29. D. Aghimien, N. Ngcobo, C. Aigbavboa, S. Dixit, N. I. Vatin, S. Kampani, and G. S. Khera, Buildings 12, (2022) [Google Scholar]
  30. S. Bhardwaj, P. Singh, and S. Dixit, in Mater Today Proc (2022), pp. 499–507 [Google Scholar]
  31. Y. Kuppusamy, R. Jayaseelan, G. Pandulu, V. S. Kumar, G. Murali, S. Dixit, and N. I. Vatin, Materials 15, (2022) [Google Scholar]
  32. R. P. Singh, G. Manchanda, I. K. Maurya, N. K. Maheshwari, P. K. Tiwari, and A. R. Rai, Biocatal Agric Biotechnol 17, 507 (2019) [CrossRef] [Google Scholar]
  33. V. Kumar, R. Kumar, D. Rawat, and M. Nanda, Appl Biol Chem 61, 7 (2018) [CrossRef] [Google Scholar]
  34. Pande, P. Gairola, P. Sambyal, S. P. Gairola, V. Kumar, K. Singh, and S. K. Dhawan, Mater Chem Phys 189, 22 (2017) [CrossRef] [Google Scholar]
  35. C. Chandana Priya, M. V Seshagiri Rao, and V. Srinivasa Reddy, International Journal of Civil Engineering and Technology 9, 2218 (2018) [Google Scholar]
  36. K. S. S. T. Naidu, M. V. S. Rao, and V. S. Reddy, International Journal of Innovative Technology and Exploring Engineering 8, 641 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.