Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01211 | |
Number of page(s) | 33 | |
DOI | https://doi.org/10.1051/e3sconf/202343001211 | |
Published online | 06 October 2023 |
- Wu, B., Zhao, R., Meng, G., Xu, S., Qiu, W., & Chen, H. (2022). A numerical study on CO migration after blasting in high-altitude tunnel by inclined shaft. Scientific Reports, 12(1), 14696. https://doi.org/10.1038/s41598-022-18995-y [CrossRef] [PubMed] [Google Scholar]
- Frömmig, L. (2023). Aerodynamics. In Basic Course in Race Car Technology: Introduction to the Interaction of Tires, Chassis, Aerodynamics, Differential Locks and Frame (pp. 141-253). Wiesbaden: Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-38470-8_6 [Google Scholar]
- Szczerba, Z., Szczerba, P., Szczerba, K., Szumski, M., & Pytel, K. (2023). Wind Tunnel Experimental Study on the Efficiency of Vertical-Axis Wind Turbines via Analysis of Blade Pitch Angle Influence. Energies, 16(13), 4903. https://doi.org/10.3390/en16134903. [CrossRef] [Google Scholar]
- Timmer, W. A., & Bak, C. (2023). Aerodynamic characteristics of wind turbine blade airfoils. In Advances in wind turbine blade design and materials (pp. 129-167). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-103007-3.00011-2 [CrossRef] [Google Scholar]
- Liu, J., Chen, R., Lou, J., Hu, Y., & You, Y. (2023). Deep-learning-based aerodynamic shape optimization of rotor airfoils to suppress dynamic stall. Aerospace Science and Technology, 133, 108089. https://doi.org/10.1016/j.ast.2022.108089 [CrossRef] [Google Scholar]
- Liu, H., Guo, Q., Shi, L., Tang, F., Dai, L., Shen, J., & Liu, J. (2023). Lift-drag characteristics of S-shaped hydrofoil under different cloud cavitation conditions. Ocean Engineering, 278, 114374. https://doi.org/10.1016/j.oceaneng.2023.114374 . [CrossRef] [Google Scholar]
- Guo, W., Shen, H., Li, Y., Feng, F., & Tagawa, K. (2021). Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine. Renewable Energy, 179, 116-132. https://doi.org/10.1016/j.renene.2021.07.033 [CrossRef] [Google Scholar]
- Tirandaz, M. R., & Rezaeiha, A. (2021). Effect of airfoil shape on power performance of vertical axis wind turbines in dynamic stall: Symmetric Airfoils. Renewable Energy, 173, 422-441. https://doi.org/10.1016/j.renene.2021.03.142 [CrossRef] [Google Scholar]
- Guo, W., Zhang, Y., Li, Y., Tagawa, K., & Zhao, B. (2021). A Wind Tunnel Experimental Study on the Icing Characteristics of a Cylinder Rotating around a Vertical Axis. Applied Sciences, 11(21), 10383. https://doi.org/10.3390/app112110383 [CrossRef] [Google Scholar]
- Al Hamad, S., Habash, O., Hasan, A., & Amano, R. S. (2022). Effect of the J-Shaped Wind Turbine Airfoil Opening Ratio and Thickness on the Performance of Symmetrical Airfoils. Journal of Energy Resources Technology, 144(5), 051303. https://doi.org/10.1115/1.4053743 [CrossRef] [Google Scholar]
- Li, X., Yang, K., Bai, J., & Xu, J. (2016). A new optimization approach to improve the overall performance of thick wind turbine airfoils. Energy, 116, 202-213. https://doi.org/10.1016/j.energy.2016.09.108 [CrossRef] [Google Scholar]
- Osei, E. Y., Opoku, R., Sunnu, A. K., & Adaramola, M. S. (2020). Development of high performance airfoils for application in small wind turbine power generation. Journal of Energy, 2020, 1-9. https://doi.org/10.1155/2020/9710189 [CrossRef] [Google Scholar]
- Obiga, O. (2018). Investigation of the performance of a slotted aerofoil at low Reynolds numbers (Doctoral dissertation, University of Nottingham). 161100460 [Google Scholar]
- Zadorozhna, D. B., Benavides, O., Grajeda, J. S., Ramirez, S. F., & de la Cruz May, L. (2021). A parametric study of the effect of leading edge spherical tubercle amplitudes on the aerodynamic performance of a 2D wind turbine airfoil at low Reynolds numbers using computational fluid dynamics. Energy Reports, 7, 4184-4196. https://doi.org/10.1016/j.egyr.2021.06.093 [CrossRef] [Google Scholar]
- Poudel, N., Yu, M., & Hrynuk, J. T. (2021). Gust mitigation with an oscillating airfoil at low Reynolds number. Physics of Fluids, 33(10), 101905. https://doi.org/10.1063/5.0065234 [CrossRef] [Google Scholar]
- Acarer, S. (2020). Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines. Energy, 201, 117659. https://doi.org/10.1016/j.energy.2020.117659 [CrossRef] [Google Scholar]
- Abobaker, M., Elfaghi, A. M., & Addeep, S. (2020). Numerical Study of Wind-Tunnel Wall Effects on Lift and Drag Characteristics of NACA 0012 Airfoil. CFD Letters, 12(11), 72-82. https://doi.org/10.37934/cfdl.12.11.7282 [CrossRef] [Google Scholar]
- Wang, R., & Xiao, Z. (2020). Transition effects on flow characteristics around a static two-dimensional airfoil. Physics of Fluids, 32(3), 035113. https://doi.org/10.1063/1.5144860 [CrossRef] [Google Scholar]
- Chao, G. A. O., Ya-ya, J. I. A., & Qing-kuan, L. I. U. (2020). Effect of relative thickness on aerodynamic performance of airfoil. 工程力学, 37(S), 380-386. 10.6052/j.issn.1000-4750.2019.04.S062 [Google Scholar]
- Chao, Z. H. O. U., Zhang, Y., & Jianghao, W. U. (2020). Effect of flexibility on unsteady aerodynamics forces of a purely plunging airfoil. Chinese Journal of Aeronautics, 33(1), 88-101. https://doi.org/10.1016/j.cja.2019.08.002 [CrossRef] [Google Scholar]
- Chen, W., Qiao, W., & Wei, Z. (2020). Aerodynamic performance and wake development of airfoils with wavy leading edges. Aerospace Science and Technology, 106, 106216. https://doi.org/10.1016/j.ast.2020.106216 [CrossRef] [Google Scholar]
- Genç, M. S., Açıkel, H. H., & Koca, K. (2020). Effect of partial flexibility over both upper and lower surfaces to flow over wind turbine airfoil. Energy Conversion and Management, 219, 113042. https://doi.org/10.1016/j.enconman.2020.113042 [CrossRef] [Google Scholar]
- Mamouri, A. R., Khoshnevis, A. B., & Lakzian, E. (2020). Experimental study of the effective parameters on the offshore wind turbine's airfoil in pitching case. Ocean Engineering, 198, 106955. https://doi.org/10.1016/j.oceaneng.2020.106955 [CrossRef] [Google Scholar]
- Wei, N. I. U., Zhang, Y., Haixin, C. H. E. N., & Zhang, M. (2020). Numerical study of a supercritical airfoil/wing with variable-camber technology. Chinese Journal of Aeronautics, 33(7), 1850-1866. https://doi.org/10.1016/j.cja.2020.01.008 [CrossRef] [Google Scholar]
- Conlan-Smith, C., Ramos-García, N., Sigmund, O., & Andreasen, C. S. (2020). Aerodynamic shape optimization of aircraft wings using panel methods. AIAA Journal, 58(9), 3765-3776 https://doi.org/10.2514/1.J058979 [CrossRef] [Google Scholar]
- Monfared, M., & Alidoostan, M. A. (2020). Optimization of drag reducing shark inspired blade-shape riblet surfaces in external flow. Journal of Applied Fluid Mechanics, 13(1), 55-65. 10.29252/JAFM.13.01.30245 [CrossRef] [Google Scholar]
- Talezade Shirazi, A., & Dehghan Manshadi, M. (2020). Streamlined bodies drag force estimation using wake integration technique. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 1-11. 10.1007/s40430-020-02373-8 [CrossRef] [Google Scholar]
- Nguyen, T. D., Kashitani, M., Taguchi, M., & Kusunose, K. (2022). Effect of Stagger on Low-Speed Performance of Busemann Biplane Airfoil. Aerospace, 9(4), 197. https://doi.org/10.3390/aerospace9040197 [CrossRef] [Google Scholar]
- Muheisen, A. H., Yass, M. A., & Irthiea, I. K. (2023). Enhancement of horizontal wind turbine blade performance using multiple airfoils sections and fences. Journal of King Saud University-Engineering Sciences, 35(1), 69-81. https://doi.org/10.1016/j.jksues.2021.02.014 [CrossRef] [Google Scholar]
- Kaya, M. N., Kok, A. R., & Kurt, H. (2021). Comparison of aerodynamic performances of various airfoils from different airfoil families using CFD. Wind and Structures, 32(3), 239-248. [Google Scholar]
- Tarhan, C., & Yilmaz, I. (2019). Numerical and experimental investigations of 14 different small wind turbine airfoils for 3 different reynolds number conditions. Wind and Structures, 28(3). 10.12989/was.2019.28.3.141 [Google Scholar]
- Alonso Estébanez, A., Coz Díaz, J. J. D., Álvarez Rabanal, F. P., Pascual Muñoz, P., & García Nieto, P. J. (2018). Numerical investigation of truck aerodynamics on several classes of infrastructures. Wind and Structures, 26 (1). https://doi.org/10.12989/was.2018.26.1.035 [Google Scholar]
- Jafari, F., Holden, D., LaFoy, R., Vlachos, P. P., & Socha, J. J. (2021). The aerodynamics of flying snake airfoils in tandem configuration. Journal of Experimental Biology, 224(14), jeb233635. https://doi.org/10.1242/jeb.233635 [CrossRef] [PubMed] [Google Scholar]
- Akram, M. T., & Kim, M. H. (2021). CFD analysis and shape optimization of airfoils using class shape transformation and genetic algorithm—Part I. Applied Sciences, 11(9), 3791. https://doi.org/10.3390/app11093791 [CrossRef] [Google Scholar]
- Duda, D., Yanovych, V., Tsymbalyuk, V., & Uruba, V. (2022). Effect of Manufacturing Inaccuracies on the Wake Past Asymmetric Airfoil by PIV. Energies, 15(3), 1227. https://doi.org/10.3390/en15031227 [CrossRef] [Google Scholar]
- Olasek, Krzysztof, and Maciej Karczewski. "Velocity data-based determination of airfoil characteristics with circulation and fluid momentum change methods, including a control surface size independence test." Experiments in Fluids 62, no. 5 (2021): 108. 10.1007/s00348-021-03193-9 [CrossRef] [Google Scholar]
- Malik, L., & Tevatia, A. (2021). Comparative Analysis of Aerodynamic Characteristics of F16 and F22 Combat Aircraft using Computational Fluid Dynamics. Defence Science Journal, 71(2). : 10.14429/dsj.71.15762 [Google Scholar]
- Uranai, S., Fukudome, K., Mamori, H., Fukushima, N., & Yamamoto, M. (2020). Numerical simulation of the anti-icing performance of electric heaters for icing on the NACA 0012 airfoil. Aerospace, 7(9), 123. https://doi.org/10.3390/aerospace7090123 [CrossRef] [Google Scholar]
- Jeon, J., Ren, Y., & Zha, G. (2023). Toward Ultra-High Cruise Lift Coefficient Using Flapped Coflow Jet Airfoil. In AIAA SCITECH 2023 Forum (p. 1008). https://doi.org/10.2514/6.2023-1008 [Google Scholar]
- Hart, P. L., & Schmitz, S. (2022). Partial Pressure Field for Airfoil Wave Drag. AIAA journal, 60(10), 5791-5804. https://doi.org/10.2514/1.J061690 [CrossRef] [Google Scholar]
- Kandwal, S., & Singh, S. (2012). Computational fluid dynamics study of fluid flow and aerodynamic forces on an airfoil. International Journal of Engineering and Technology, 1(7), 1-8. 10.14429/dsj.71.15762 [CrossRef] [Google Scholar]
- Shams, T. A., Shah, S. I. A., Javed, A., & Hamdani, S. H. R. (2020). Airfoil selection procedure, wind tunnel experimentation and implementation of 6dof modeling on a flying wing micro aerial vehicle. Micromachines, 11(6), 553. https://doi.org/10.3390/mi11060553 [CrossRef] [PubMed] [Google Scholar]
- Iliev, V., Lazarevikj, M., & Aleksoski, V. (2020). Numerical and experimental investigation of airfoil performance in a wind tunnel. Am. J. Eng. Res, 9, 119-124. [Google Scholar]
- Ricco, P., Skote, M., & Leschziner, M. A. (2021). A review of turbulent skin-friction drag reduction by near-wall transverse forcing. Progress in Aerospace Sciences, 123, 100713. https://doi.org/10.1016/j.paerosci.2021.100713 [CrossRef] [Google Scholar]
- Shah, Y., Ghaemi, S., & Yarusevych, S. (2022). Experimental investigation of extreme skin friction events in polymer drag-reduced turbulent boundary layers. Experiments in Fluids, 63(1), 27. 10.1007/s00348-021-03374-6 [CrossRef] [Google Scholar]
- Olivucci, P., Wise, D. J., & Ricco, P. (2021). Reduction of turbulent skin-friction drag by passively rotating discs. Journal of Fluid Mechanics, 923, A8. https://doi.org/10.1017/jfm.2021.533 [CrossRef] [Google Scholar]
- Xue, R., Zheng, X., Yue, L., Zhang, Q., He, X., Yang, J., ... & Li, Z. (2021). Reduction of surface friction drag in scramjet engine by boundary layer combustion. Aerospace Science and Technology, 115, 106788. https://doi.org/10.1016/j.ast.2021.106788 [CrossRef] [Google Scholar]
- Bidkar, R. A., Leblanc, L., Kulkarni, A. J., Bahadur, V., Ceccio, S. L., & Perlin, M. (2014). Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Physics of Fluids, 26(8), 085108. https://doi.org/10.1063/1.4892902 [CrossRef] [Google Scholar]
- Kim, J. H., & Lee, J. H. (2017). Skin-friction drag reduction in turbulent channel flow based on streamwise shear control. International Journal of Heat and Fluid Flow, 63, 28-43. https://doi.org/10.1016/j.ijheatfluidflow.2016.12.001 [CrossRef] [Google Scholar]
- Pynaert, N., Wauters, J., Crevecoeur, G., & Degroote, J. (2022, May). Unsteady aerodynamic simulations of a multi-megawatt airborne wind energy reference system using computational fluid dynamics. In Journal of Physics: Conference Series (Vol. 2265, No. 4, p. 042060). IOP Publishing. 10.1088/1742-6596/2265/4/042060 [CrossRef] [Google Scholar]
- Lier, R., Duclut, C., Bo, S., Armas, J., Jülicher, F., & Surówka, P. (2022). Lift force in odd compressible fluids. arXiv preprint arXiv:2205.12704.https://doi.org/10.48550/arXiv.2205.12704 [Google Scholar]
- Lafzi, A., & Dabiri, S. (2022). A numerical lift force analysis on the inertial migration of a deformable droplet in steady and oscillatory microchannel flows. Lab on a Chip, 22(17), 3245-3257.https://doi.org/10.1039/D2LC00151A [CrossRef] [PubMed] [Google Scholar]
- Dai, Z., Li, T., Deng, J., Zhou, N., & Zhang, W. (2022). Effect of the strip spacing on the aerodynamic performance of a high-speed double-strip pantograph. Vehicle System Dynamics, 60(10), 3358-3374. https://doi.org/10.1080/00423114.2021.1945117 [CrossRef] [Google Scholar]
- Hidman, N., Ström, H., Sasic, S., & Sardina, G. (2022). The lift force on deformable and freely moving bubbles in linear shear flows. Journal of Fluid Mechanics, 952, A34. https://doi.org/10.1017/jfm.2022.917 [CrossRef] [Google Scholar]
- Lucas, D., Krepper, E., & Prasser, H. M. (2001). Prediction of radial gas profiles in vertical pipe flow on the basis of bubble size distribution. International Journal of Thermal Sciences, 40(3), 217-225. https://doi.org/10.1016/S1290-0729(00)01211-4 [CrossRef] [Google Scholar]
- Cha, H., Fallahi, H., Dai, Y., Yuan, D., An, H., Nguyen, N. T., & Zhang, J. (2022). Multiphysics microfluidics for cell manipulation and separation: A review. Lab on a Chip, 22(3), 423-444. https://doi.org/10.1039/D1LC00869B [CrossRef] [PubMed] [Google Scholar]
- Gazzola, F., & Patriarca, C. (2022). An explicit threshold for the appearance of lift on the deck of a bridge. Journal of Mathematical Fluid Mechanics, 24, 1-23. 10.1007/s00021-021-00643- [CrossRef] [Google Scholar]
- Zaareer, M., & Mourad, A. H. (2022). Effect of vehicle side mirror base position on aerodynamic forces and acoustics. Alexandria Engineering Journal, 61(2), 1437-1448. https://doi.org/10.1016/j.aej.2021.06.049 [CrossRef] [Google Scholar]
- Maji, D. S. B., & Mustaffa, N. (2022). CFD Analysis of Rear-Spoilers Effectiveness on Sedan Vehicle in Compliance with Malaysia National Speed Limit. Journal of Automotive Powertrain and Transportation Technology, 2(1), 26-36. https://penerbit.uthm.edu.my/ojs/index.php/japtt/article/view/11849 [CrossRef] [Google Scholar]
- Bianchi, D., Migliorino, M. T., Rotondi, M., & Turchi, A. (2021). Numerical analysis and wind tunnel validation of low-temperature ablators undergoing shape change. International Journal of Heat and Mass Transfer, 177, 121430. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121430 [CrossRef] [Google Scholar]
- Carreño Ruiz, M., Bloise, N., Guglieri, G., & D’Ambrosio, D. (2022). Numerical Analysis and Wind Tunnel Validation of Droplet Distribution in the Wake of an Unmanned Aerial Spraying System in Forward Flight. Drones, 6(11), 329. https://doi.org/10.3390/agriculture13030628 [CrossRef] [Google Scholar]
- Aly, A. M., Khaled, F., & Gol-Zaroudi, H. (2020). Aerodynamics of low-rise buildings: Challenges and recent advances in experimental and computational methods. Aerodynamics, 18(Jun), 1-22. http://dx.doi.org/10.5772/intechopen.89255. [Google Scholar]
- Alviani, R., Blaisdell, G. A., & Poggie, J. (2022). Computational analysis of planned high-speed swept wing-elevon experiments. In AIAA SCITECH 2022 Forum (p. 2198). https://doi.org/10.2514/6.2022-2198 [Google Scholar]
- Tavakol, M. M., Yaghoubi, M., & Ahmadi, G. (2021). Experimental and numerical analysis of airflow around a building model with an array of domes. Journal of Building Engineering, 34, 101901. https://doi.org/10.1016/j.jobe.2020.101901 [CrossRef] [Google Scholar]
- He, X., & Zou, S. (2021). Advances in wind tunnel experimental investigations of train–bridge systems. Tunnelling and Underground Space Technology, 118, 104157. https://doi.org/10.1016/j.tust.2021.104157 [CrossRef] [Google Scholar]
- Siram, O., Kesharwani, N., Sahoo, N., & Saha, U. K. (2022). Aerodynamic design and wind tunnel tests of small-scale horizontal-axis wind turbines for low tip speed ratio applications. Journal of Solar Energy Engineering, 144(4), 041009. https://doi.org/10.1115/1.4053453 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.