Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01266 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202343001266 | |
Published online | 06 October 2023 |
- T. Nandanwar, K. Waghela, E. Gupta, and T. Narendiranath Babu, “Topology Optimization of the Bell Crank & Brake Pedal,” in IOP Conference Series: Materials Science and Engineering, 2021, vol. 1123, no. 012035, pp. 1–10. doi: 10.1088/1757-899x/1123/1/012035. [Google Scholar]
- J. Balkwill, “Suspension Kinematics,” in Performance Vehicle Dynamics, 2018, pp. 197–239. doi: 10.1016/b978-0-12-812693-6.00007-9. [Google Scholar]
- A. Pande, O. Ingole, D. Jadhav, D. Dhamecha, A. Dongre, and G. Dongre, “Topology Optimization of Bell Crank Lever,” TIJER-INTERNATIONAL Res. J., vol. 9, no. 12, pp. 92–97, 2022. [Google Scholar]
- A. M. Sharma, S. Konwar Roy, A. R, and N. Das Thaikoothattil, “Structural analysis of bellcrank in a pullrod suspension system in an FSAE prototype,” J. Univ. Shanghai Sci. Technol., vol. 23, no. 10, pp. 236–246, 2021, doi: 10.51201/jusst/21/10743. [CrossRef] [Google Scholar]
- T. Y. Pang and M. Fard, “Reverse engineering and topology optimization for weight-reduction of a bell-crank,” Appl. Sci., vol. 10, no. 23, pp. 1–16, Dec. 2020, doi: 10.3390/app10238568. [Google Scholar]
- J. Mesicek, M. Pagac, J. Petru, P. Novak, J. Hajnys, and K. Kutiova, “Topological optimization of the formula student bell crank,” MM Sci. J., vol. 2019, no. October, pp. 2964–2968, Oct. 2019, doi: 10.17973/MMSJ.2019_10_201893. [CrossRef] [Google Scholar]
- K. P. Gyu-Won Kim, Yeong-Il Park, “Topology Optimization and Additive Manufacturing of Automotive Components By Coupling Kinematic and Structural Analysis,” Int. J. Automot. Technol., vol. 21, no. 6, pp. 1455–1463, 2020, doi: 10.1007/s12239. [CrossRef] [Google Scholar]
- J. H. Zhu, W. H. Zhang, and L. Xia, “Topology Optimization in Aircraft and Aerospace Structures Design,” Arch. Comput. Methods Eng., vol. 23, no. 4, pp. 595–622, 2016, doi: 10.1007/s11831-015-9151-2. [CrossRef] [Google Scholar]
- M. Cavazzuti, D. Costi, A. Baldini, and P. Moruzzi, “Automotive chassis topology optimization: A comparison between spider and coupé designs,” Proc. World Congr. Eng. 2011, WCE 2011, vol. 3, no. January 2019, pp. 2289–2293, 2011. [Google Scholar]
- P. K. Srivastava, Simant, and S. Shukla, “Topology optimization: An effort to reduce the weight of bottom centre pivot,” Int. J. Recent Technol. Eng., vol. 8, no. 2, pp. 1489–1494, 2019, doi: 10.35940/ijrte.B2131.078219. [Google Scholar]
- M. N. Sudin, M. M. Tahir, F. R. Ramli, and S. A. Shamsuddin, “Topology optimization in automotive brake pedal redesign,” Int. J. Eng. Technol., vol. 6, no. 1, pp. 398–402, 2014, [Online]. Available: https://www.researchgate.net/publication/260449002 [Google Scholar]
- P. A. Chacón Santamaría, A. Sierra, and O. A. González Estrada, “Shape optimization of a control arm produced by additive manufacturing with fiber reinforcement,” J. Phys. Conf. Ser., vol. 1386, no. 1, pp. 1–7, 2019, doi: 10.1088/1742-6596/1386/1/012003. [Google Scholar]
- M. R. Patil and E. N. K. Patil, “Stress Analysis of Bell Crank Lever in Sewing Machine,” vol. 4, no. 6, pp. 102–106, 2017. [Google Scholar]
- J. W. Chang and Y. S. Lee, “Topology optimization of compressor bracket,” J. Mech. Sci. Technol., vol. 22, no. 9, pp. 1668–1676, 2008, doi: 10.1007/s12206-008-0428-3. [CrossRef] [Google Scholar]
- P. Wu, Q. Ma, Y. Luo, and C. Tao, “Topology Optimization Design of Automotive Engine Bracket,” Energy Power Eng., vol. 08, no. 04, pp. 230–235, 2016, doi: 10.4236/epe.2016.84021. [CrossRef] [Google Scholar]
- P. Kumar Srivastava and S. Shukla, “Structural Optimization Methods: A General Review,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 6, no. 9, pp. 88–92, 2017, [Online]. Available: www.ijirset.com [Google Scholar]
- D. Vlah, R. Žavbi, and N. Vukašinović, “EVALUATION OF TOPOLOGY OPTIMIZATION AND GENERATIVE DESIGN TOOLS AS SUPPORT FOR CONCEPTUAL DESIGN,” in INTERNATIONAL DESIGN CONFERENCE-DESIGN 2020, 2020, no. 2633–7763, pp. 451–460. doi: https://doi.org/10.1017/dsd.2020.165. [Google Scholar]
- Y. Keskar, S. Damkale, and P. Dhatrak, Optimization of Electric Vehicle Ladder Frame Chassis Based on Material and Thickness Parameter Variation Using FEA, vol. 265. Springer Singapore, 2022. doi: 10.1007/978-981-16-6482-3_43. [Google Scholar]
- K. Akshay and M. Gagandeep Singh, “Analysis of engine mounting bracket for an automobile using FEA,” Indian J. Sci. Technol., vol. 11, no. 28, pp. 1–7, 2018, doi: 10.17485/ijst/2018/v11i28/130778. [CrossRef] [Google Scholar]
- E. Tyflopoulos and M. Steinert, “A Comparative Study of the Application of Different Commercial Software for Topology Optimization,” Appl. Sci., vol. 12, no. 2, 2022, doi: 10.3390/app12020611. [CrossRef] [Google Scholar]
- V. Ghungarde, S. Awachar, N. K. Vaidya, and T. Jagadeesha, “Design optimization of steering knuckle by adopting bionic design approach,” IOP Conf. Ser. Mater. Sci. Eng., vol. 624, no. 1, pp. 1–7, 2019, doi: 10.1088/1757-899X/624/1/012023. [CrossRef] [Google Scholar]
- L. Barbieri and M. Muzzupappa, “Performance-Driven Engineering Design Approaches Based on Generative Design and Topology Optimization Tools: A Comparative Study,” Appl. Sci., vol. 12, no. 4, pp. 1–17, 2022, doi: 10.3390/app12042106. [CrossRef] [Google Scholar]
- M. A. kumar Satya, B G N, “Topology Optimization of Alloy Wheel,” Hyundai, vol. 3, pp. 1–7, 2013, [Online]. Available: http://altairatc.com/india/previous-events/2013/images/presentations/os-15_topology_optimization-hyundai.pdf [Google Scholar]
- K. Partin, K. O. Findley, and C. J. Van Tyne, “Microstructural and alloy influence on the low-temperature strengthening behavior of commercial steels used as plates,” Mater. Sci. Eng. A, vol. 527, no. 20, pp. 5143–5152, 2010, doi: 10.1016/j.msea.2010.04.092. [CrossRef] [Google Scholar]
- O. Kurdi, I. Haryanto, G. D. Haryadi, and M. Wildan, “Dynamic Analysis of Electric Bus Chassis Using Finite Element Method,” Proceeding - 2018 5th Int. Conf. Electr. Veh. Technol. ICEVT 2018, vol. 978, no. 1, pp. 214–217, 2019, doi: 10.1109/ICEVT.2018.8628452. [Google Scholar]
- S. A. Widyanto, O. Kurdi, G. D. Haryadi, I. Haryanto, and M. I. Rokhim, “Stress analysis of electric bus chassis using finite element method,” J. Phys. Conf. Ser., vol. 1321, no. 2, pp. 3–8, 2019, doi: 10.1088/1742-6596/1321/2/022014. [CrossRef] [Google Scholar]
- I. Aniekan, O. Ikechukwu, and P. O. Ebunilo, “Redesign of a Bell Crank to Ensure Compliance with Von-mises Failure Criterion,” vol. 7, no. 5, pp. 394–407, 2016. [Google Scholar]
- S. Rv, M. Zaki, R. Jain, D. Kumar, and R. Singh, “Design and Fatigue Analysis of Bicycle Crank-Lever,” Int. Res. J. Eng. Technol., vol. 08, no. 06, pp. 2906–2911, 2021, [Online]. Available: www.irjet.net [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.