Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01275
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/202343001275
Published online 06 October 2023
  1. Carr, A. J., Robertsson, O., Graves, S., Price, A. J., Arden, N. K., Judge, A., & Beard, D. J. Knee replacement. The Lancet, 379(9823), 1331-1340, (2012). DOI: https://doi.org/10.1016/S0140-6736(11)60752-6. [CrossRef] [Google Scholar]
  2. Lespasio, M. J., Piuzzi, N. S., Husni, M. E., Muschler, G. F., Guarino, A. J., & Mont, M. A. Knee osteoarthritis: a primer. The Permanente Journal, 21, (2017). DOI: https://doi.org/10.7812/TPP/16-183. [CrossRef] [PubMed] [Google Scholar]
  3. Ghidotti, A., Vitali, A., Regazzoni, D., & Rizzi, C. An Investigation of Innovative 3D Modelling Procedures for Patient-specific Total Knee Arthroplasty, (2022). DOI: https://doi.org/10.14733/cadaps.2022.306-319. [Google Scholar]
  4. Alyazji, Q., Topukçu, Z., & Kassem, Y. Custom Design of Knee Joint Prosthesis By Using Computerized Tomography (CT) Images and 3D Modelling. Int. J. Biomed. Eng. Sci, 1, 1-9, (2014). [Google Scholar]
  5. Castiello, E., & Affatato, S. Istituto Ortopedico Rizzoli, Bologna, Italy, (2015).DOI: http://dx.doi.org/10.1533/9781782420385.2.109. [Google Scholar]
  6. Varacallo, M., Luo, T. D., & Johanson, N. A. Total knee arthroplasty techniques. In StatPearls [Internet]. StatPearls Publishing, (2022). [Google Scholar]
  7. Leopold, S. S. Minimally invasive total knee arthroplasty for osteoarthritis. New England Journal of Medicine, 360(17), 1749-1758, (2009). DOI: 10.1056/NEJMct0806027. [CrossRef] [PubMed] [Google Scholar]
  8. Garampalli, A., Patil, A., & Quadri, M. Our experience of total knee arthroplasty in rural Karnataka region. International Journal of Orthopaedics, 6(1),1082-1088, (2020). DOI: https://doi.org/10.22271/ortho.2020.v6.i1n.1966. [CrossRef] [Google Scholar]
  9. Tande, A. J., & Patel, R. Prosthetic joint infection. Clinical microbiology reviews, 27(2), 302-345, (2014). DOI: https://doi.org/10.1128/CMR.00111-13. [CrossRef] [PubMed] [Google Scholar]
  10. Parratte, S., Pesenti, S., & Argenson, J. N. Obesity in orthopedics and trauma surgery. Orthopaedics & Traumatology: Surgery & Research, 100(1), S91-S97, (2014). DOI: https://doi.org/10.1016/j.otsr.2013.11.003. [CrossRef] [Google Scholar]
  11. Bin Abd Razak, H. R., Chong, H. C., & Tan, A. H. C. Obesity does not imply poor outcomes in Asians after total knee arthroplasty. Clinical Orthopaedics and Related Research®, 471(6), 1957-1963, (2013). [CrossRef] [PubMed] [Google Scholar]
  12. Si, H. B., Zeng, Y., Shen, B., Yang, J., Zhou, Z. K., Kang, P. D., & Pei, F. X. The influence of body mass index on the outcomes of primary total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 23(6), 1824-1832, (2015). [CrossRef] [PubMed] [Google Scholar]
  13. Ast, M. P., Abdel, M. P., Lee, Y. Y., Lyman, S., Ruel, A. V., & Westrich, G. H. Weight changes after total hip or knee arthroplasty: prevalence, predictors, and effects on outcomes. JBJS, 97(11), 911- 919, (2015). DOI: 10.2106/JBJS.N.00232. [CrossRef] [PubMed] [Google Scholar]
  14. Sharkey, P. F., Lichstein, P. M., Shen, C., Tokarski, A. T., & Parvizi, J. Why are total knee arthroplasties failing today—has anything changed after 10 years?. The Journal of arthroplasty, 29(9), 1774-1778, (2014). DOI: https://doi.org/10.1016/j.arth.2013.07.024. [CrossRef] [PubMed] [Google Scholar]
  15. Zhang, G., Li, J., Zhou, X., Zhou, Y., & Wang, A. Optimal Design and Processing Technology of 3D Printed Tibial Implants. Coatings, 12(5), 561, (2022). DOI: https://doi.org/10.3390/coatings12050561. [CrossRef] [Google Scholar]
  16. Bautista, A. I. A Finite Element Analysis of Tibial Stem Geometry for Total Knee Replacements. (2015). DOI: https://doi.org/10.15368/theses.2015.111. [Google Scholar]
  17. Krishnan, S. P., Dawood, A., Richards, R., Henckel, J., & Hart, A. J. A review of rapid prototyped surgical guides for patient-specific total knee replacement. The Journal of bone and joint surgery. British volume, 94(11), 1457-1461, (2012). DOI: https://doi.org/10.1302/0301-620X.94B11.29350. [CrossRef] [Google Scholar]
  18. Khalid, H., Hussain, M., Al Ghamdi, M. A., Khalid, T., Khalid, K., Khan, M. A., ... & Ahmed, A. A comparative systematic literature review on knee bone reports from MRI, x-rays and ct scans using deep learning and machine learning methodologies. Diagnostics, 10(8), 518, (2020). DOI: https://doi.org/10.3390/diagnostics10080518. [CrossRef] [PubMed] [Google Scholar]
  19. Chougule, V. N., Mulay, A. V., & Ahuja, B. B. (2013, December). Conversions of CT scan images into 3D point cloud data for the development of 3D solid model using B-Rep scheme. In Proceedings of the International Conference on Precision, Meso, Micro and Nano Engineering (Vol. 2).(2013). [Google Scholar]
  20. Narita, M., Takaki, T., Shibahara, T., Iwamoto, M., Yakushiji, T., & Kamio, T. Utilization of desktop 3D printer-fabricated “Cost-Effective” 3D models in orthognathic surgery. Maxillofacial plastic and reconstructive surgery, 42(1), 1-7, (2020). [CrossRef] [PubMed] [Google Scholar]
  21. Kumar, V. J., Reddy, P. S., & Murthy, N. G. Modeling and biomechanical analysis of human knee joint. Int. J. Sci. Eng. Adv. Technol, 2, 246-252, (2014). [Google Scholar]
  22. Kumbhalkar, M. A., Nawghare, U., Ghode, R., Deshmukh, Y., & Armarkar, B. Modeling and finite element analysis of knee prosthesis with and without implant. Universal Journal of Computational Mathematics, 1(2), 56-66, (2013). DOI: 10.13189/ujcmj.2013.010204. [CrossRef] [Google Scholar]
  23. Harish, S., & Devadath, V. R. Additive manufacturing and analysis of tibial insert in total knee replacement implant. Int Res J Eng Technol, 2(04), 633-638, (2015). [Google Scholar]
  24. Attarilar, S., Ebrahimi, M., Djavanroodi, F., Fu, Y., Wang, L., & Yang, J. 3D printing technologies in metallic implants: a thematic review on the techniques and procedures. International Journal of Bioprinting, 7(1), (2021). DOI: https://doi.org/10.18063%2Fijb.v7i1.306 [PubMed] [Google Scholar]
  25. Boorla, R., & Prabeena, T. Fabrication of patient specific knee implant by fused deposition modeling. Materials Today: Proceedings, 18, 3638-3642, (2019). DOI: https://doi.org/10.1016/j.matpr.2019.07.296. [CrossRef] [Google Scholar]
  26. Price, A. J., Alvand, A., Troelsen, A., Katz, J. N., Hooper, G., Gray, A., ... & Beard, D. Hip and knee replacement 2 Knee replacement. Lancet, 392, 1672-1682, (2018). DOI: https://doi.org/10.1016/S0140-6736(18)32344-4. [CrossRef] [PubMed] [Google Scholar]
  27. Chang, Y., Lee, M. S., Liau, J. J., Liu, Y. L., Chen, W. C., & Ueng, S. W. Polyethylene-based knee spacer for infection control: design concept and pre-clinical in vitro validations. Polymers, 12(10), 2334, (2020). DOI: https://doi.org/10.3390/polym12102334. [CrossRef] [PubMed] [Google Scholar]
  28. Koh, Y. G., Jung, K. H., Hong, H. T., Kim, K. M., & Kang, K. T. Optimal design of patient-specific total knee arthroplasty for improvement in wear performance. Journal of Clinical Medicine, 8(11), (2023). DOI: https://doi.org/10.3390/jcm8112023. [Google Scholar]
  29. Kuehn, K. D., Ege, W., & Gopp, U. Acrylic bone cements: mechanical and physical properties. Orthopedic Clinics, 36(1), 29-39, (2005). DOI: https://doi.org/10.1016/j.ocl.2004.06.011. [Google Scholar]
  30. Mellman, I. S., Plutner, H., Steinman, R. M., Unkeless, J. C., & Cohn, Z. A.. Internalization and degradation of macrophage Fc receptors during receptor-mediated phagocytosis. The Journal of cell biology, 96(3), 887-895(1983) DOI: https://doi.org/10.1083/jcb.96.3.887. [CrossRef] [PubMed] [Google Scholar]
  31. Sieving, A., Wu, B., Mayton, L., Nasser, S., & Wooley, P. H. Morphological characteristics total joint arthroplasty-derived ultra-high molecular weight polyethylene (UHMWPE) wear debris that provoke inflammation in a murine model of inflammation. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 64(3), 457-464, (2003). DOI: https://doi.org/10.1002/jbm.a.10368. [Google Scholar]
  32. Elke, R., & Rieker, C. B. Estimating the osteolysis-free life of a total hip prosthesis depending on the linear wear rate and head size. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(8), 753-758, (2018). DOI: https://doi.org/10.1177/0954411918784982. [CrossRef] [PubMed] [Google Scholar]
  33. Loi, I., Stanev, D., & Moustakas, K. Total knee replacement: subject-specific modeling, finite element analysis, and evaluation of dynamic activities. Frontiers in Bioengineering and Biotechnology, 9, 648356, (2021). [CrossRef] [PubMed] [Google Scholar]
  34. Gómez-Gras, G., Abad, M. D., & Pérez, M. A. Mechanical performance of 3D-printed biocompatible polycarbonate for biomechanical applications. Polymers, 13(21), 3669, (2021). DOI: https://doi.org/10.3389/fbioe.2021.648356. [Google Scholar]
  35. Fritz, J., Lurie, B., & Potter, H. G. MR imaging of knee arthroplasty implants. Radiographics, 35(5), 1483-1501, (2015). DOI: https://doi.org/10.1148/rg.2015140216. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.