Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01282
Number of page(s) 15
DOI https://doi.org/10.1051/e3sconf/202343001282
Published online 06 October 2023
  1. Ngo, Tuan D., et al. “Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges.” Composites Part B: Engineering, vol. 143, June 2018, pp. 172–96. ScienceDirect, https://doi.org/10.1016/j.compositesb.2018.02.012 . [CrossRef] [Google Scholar]
  2. Gao, Wei, et al. “The Status, Challenges, and Future of Additive Manufacturing in Engineering.” Computer-Aided Design, vol. 69, Dec. 2015, pp. 65–89. ScienceDirect, https://doi.org/10.1016/j.cad.2015.04.001 . [CrossRef] [Google Scholar]
  3. Berman, Barry. “3-D Printing: The New Industrial Revolution.” Business Horizons, vol. 55, no. 2, Mar. 2012, pp. 155–62. ScienceDirect, https://doi.org/10.1016/j.bushor.2011.11.003 . [CrossRef] [Google Scholar]
  4. Stansbury, Jeffrey W., and Mike J. Idacavage. “3D Printing with Polymers: Challenges among Expanding Options and Opportunities.” Dental Materials, vol. 32, no. 1, Jan. 2016, pp. 54–64. ScienceDirect, https://doi.org/10.1016/j.dental.2015.09.018 . [CrossRef] [PubMed] [Google Scholar]
  5. Vaezi, Mohammad, et al. “A Review on 3D Micro-Additive Manufacturing Technologies.” The International Journal of Advanced Manufacturing Technology, vol. 67, no. 5, July 2013, pp. 1721–54. Springer Link, https://doi.org/10.1007/s00170-012-4605-2 . [CrossRef] [Google Scholar]
  6. Kruth, J. P. “Material Incress Manufacturing by Rapid Prototyping Techniques.” CIRP Annals, vol. 40, no. 2, 1991, pp. 603–14. DOI.org (Crossref), https://doi.org/10.1016/S0007-8506(07)61136-6. [CrossRef] [Google Scholar]
  7. Gibson, I., et al. Additive Manufacturing Technologies: 3D Printing Rapid Prototyping and Direct Digital Manufacturing, Second edition, Springer, 2015. [CrossRef] [Google Scholar]
  8. Melchels, Ferry P. W., et al. “A Review on Stereolithography and Its Applications in Biomedical Engineering.” Biomaterials, vol. 31, no. 24, Aug. 2010, pp. 6121–30. ScienceDirect, https://doi.org/10.1016/j.biomaterials.2010.04.050 . [CrossRef] [Google Scholar]
  9. Travitzky, Nahum, et al. “Additive Manufacturing of Ceramic-Based Materials.” Advanced Engineering Materials, vol. 16, no. 6, 2014, pp. 729–54. Wiley Online Library, https://doi.org/10.1002/adem.201400097 . [CrossRef] [Google Scholar]
  10. Mohan Pandey, Pulak, et al. “Slicing Procedures in Layered Manufacturing: A Review.” Rapid Prototyping Journal, vol. 9, no. 5, Dec. 2003, pp. 274–88. DOI.org (Crossref), https://doi.org/10.1108/13552540310502185. [CrossRef] [Google Scholar]
  11. Agarwala, Mukesh K., et al. “Structural Quality of Parts Processed by Fused Deposition.” Rapid Prototyping Journal, vol. 2, no. 4, Dec. 1996, pp. 4–19. DOI.org (Crossref), https://doi.org/10.1108/13552549610732034. [CrossRef] [Google Scholar]
  12. Mohamed, Omar A., et al. “Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects.” Advances in Manufacturing, vol. 3, no. 1, Mar. 2015, pp. 42–53. Springer Link, https://doi.org/10.1007/s40436-014-0097-7 . [CrossRef] [Google Scholar]
  13. Sood, Anoop Kumar, et al. “Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts.” Materials & Design, vol. 31, no. 1, Jan. 2010, pp. 287–95. DOI.org (Crossref), https://doi.org/10.1016/j.matdes.2009.06.016 . [CrossRef] [Google Scholar]
  14. Chohan, Jasgurpreet Singh, et al. “Dimensional Accuracy Analysis of Coupled Fused Deposition Modeling and Vapour Smoothing Operations for Biomedical Applications.” Composites Part B: Engineering, vol. 117, May 2017, pp. 138–49. ScienceDirect, https://doi.org/10.1016/j.compositesb.2017.02.045 . [CrossRef] [Google Scholar]
  15. Parandoush, Pedram, and Dong Lin. “A Review on Additive Manufacturing of Polymer-Fiber Composites.” Composite Structures, vol. 182, Dec. 2017, pp. 36–53. ScienceDirect, https://doi.org/10.1016/j.compstruct.2017.08.088 . [CrossRef] [Google Scholar]
  16. Wang, Xin, et al. “3D Printing of Polymer Matrix Composites: A Review and Prospective.” Composites Part B: Engineering, vol. 110, Feb. 2017, pp. 442–58. ScienceDirect, https://doi.org/10.1016/j.compositesb.2016.11.034 . [CrossRef] [Google Scholar]
  17. Utela, Ben, et al. “A Review of Process Development Steps for New Material Systems in Three Dimensional Printing (3DP).” Journal of Manufacturing Processes, vol. 10, no. 2, July 2008, pp. 96–104. ScienceDirect, https://doi.org/10.1016/j.jmapro.2009.03.002. [CrossRef] [Google Scholar]
  18. Lee, Hyub, et al. “Lasers in Additive Manufacturing: A Review.” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 4, no. 3, July 2017, pp. 307–22. Springer Link, https://doi.org/10.1007/s40684-017-0037-7 . [CrossRef] [Google Scholar]
  19. Yang, Yang, and Jayesh Bharathan. Polymer Light-Emitting Logos Processed by Ink-Jet Printing Technology. Edited by E. F. Schubert, 1998, p. 78. DOI.org (Crossref), https://doi.org/10.1117/12.304412. [Google Scholar]
  20. Calvert, Paul. “Inkjet Printing for Materials and Devices.” Chemistry of Materials, vol. 13, no. 10, Oct. 2001, pp. 3299–305. DOI.org (Crossref), https://doi.org/10.1021/cm0101632. [CrossRef] [Google Scholar]
  21. de Gans, B. J., et al. “Inkjet Printing of Polymers: State of the Art and Future Developments.” Advanced Materials, vol. 16, no. 3, Feb. 2004, pp. 203–13. DOI.org (Crossref), https://doi.org/10.1002/adma.200300385. [CrossRef] [Google Scholar]
  22. Williams, Christopher B., et al. “Additive Manufacturing of Metallic Cellular Materials via Three-Dimensional Printing.” The International Journal of Advanced Manufacturing Technology, vol. 53, no. 1–4, Mar. 2011, pp. 231–39. DOI.org (Crossref), https://doi.org/10.1007/s00170-010-2812-2. [CrossRef] [Google Scholar]
  23. Sachs, Emanuel M., et al. Metal and Ceramic Containing Parts Produced from Powder Using Binders Derived from Salt. US6508980B1, https://patents.google.com/patent/US6508980B1/en. Accessed 6 Nov. 2021. [Google Scholar]
  24. Yoo, J., et al. Structural Ceramic Components by 3D Printing. 1993. repositories.lib.utexas.edu, https://doi.org/10.15781/T28S4K62P. [Google Scholar]
  25. Sachs, E., et al. “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model.” CIRP Annals, vol. 39, no. 1, Jan. 1990, pp. 201–04. ScienceDirect, https://doi.org/10.1016/S0007-8506(07)61035-X. [CrossRef] [Google Scholar]
  26. Lam, C. X. F., et al. “Scaffold Development Using 3D Printing with a Starch-Based Polymer.” Materials Science and Engineering: C, vol. 20, no. 1–2, May 2002, pp. 49–56. DOI.org (Crossref), https://doi.org/10.1016/S0928-4931(02)00012-7 . [CrossRef] [Google Scholar]
  27. Leong, K. F., et al. “Solid Freeform Fabrication of Three-Dimensional Scaffolds for Engineering Replacement Tissues and Organs.” Biomaterials, vol. 24, no. 13, June 2003, pp. 2363–78. ScienceDirect, https://doi.org/10.1016/S0142-9612(03)00030-9. [CrossRef] [PubMed] [Google Scholar]
  28. Tay, B. Y., et al. “Processing of Polycaprolactone Porous Structure for Scaffold Development.” Journal of Materials Processing Technology, vol. 182, no. 1–3, Feb. 2007, pp. 117–21. DOI.org (Crossref), https://doi.org/10.1016/j.jmatprotec.2006.07.016. [CrossRef] [Google Scholar]
  29. Suwanprateeb, J., and R. Chumnanklang. “Three-Dimensional Printing of Porous Polyethylene Structure Using Water-Based Binders.” Journal of Biomedical Materials Research. Part B, Applied Biomaterials, vol. 78, no. 1, July 2006, pp. 138–45. PubMed, https://doi.org/10.1002/jbm.b.30469. [PubMed] [Google Scholar]
  30. Lee, Min, et al. “Scaffold Fabrication by Indirect Three-Dimensional Printing.” Biomaterials, vol. 26, no. 20, July 2005, pp. 4281–89. DOI.org (Crossref), https://doi.org/10.1016/j.biomaterials.2004.10.040. [CrossRef] [PubMed] [Google Scholar]
  31. Gibson, Ian, et al. “Sheet Lamination Processes.” Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, edited by Ian Gibson et al., Springer, 2015, pp. 219–44. Springer Link, https://doi.org/10.1007/978-1-4939-2113-3_9 . [Google Scholar]
  32. Gibson, Ian, et al. “Directed Energy Deposition Processes.” Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, edited by Ian Gibson et al., Springer, 2015, pp. 245–68. Springer Link, https://doi.org/10.1007/978-1-4939-2113-3_10 . [Google Scholar]
  33. Wilson, J. Michael, et al. “Remanufacturing of Turbine Blades by Laser Direct Deposition with Its Energy and Environmental Impact Analysis.” Journal of Cleaner Production, vol. 80, Oct. 2014, pp. 170–78. ScienceDirect, https://doi.org/10.1016/j.jclepro.2014.05.084. [CrossRef] [Google Scholar]
  34. Kathuria, Y. P. “Laser-Cladding Process: A Study Using Stationary and Scanning CO2 Laser Beams.” Surface & Coatings Technology, vol. 1–3, no. 97, 1997, pp. 442–47. www.infona.pl, https://doi.org/10.1016/S0257-8972(97)00165-5. [CrossRef] [Google Scholar]
  35. Tuominen, Jari, et al. “Corrosion-Resistant Nickel Superalloy Coatings Laser Clad with a 6-KW High-Power Diode Laser (HPDL).” First International Symposium on High-Power Laser Macroprocessing, vol. 4831, SPIE, 2003, pp. 59–64. www.spiedigitallibrary.org, https://doi.org/10.1117/12.497958. [CrossRef] [Google Scholar]
  36. Zhong, Minlin, et al. “High-Power Laser Cladding Stellite 6+WC with Various Volume Rates.” Journal of Laser Applications, vol. 13, no. 6, Dec. 2001, pp. 247–51. lia.scitation.org (Atypon), https://doi.org/10.2351/1.1418706. [CrossRef] [Google Scholar]
  37. Gedda, H., et al. “Energy Redistribution during CO2 Laser Cladding.” Journal of Laser Applications, vol. 14, no. 2, May 2002, pp. 78–82. DOI.org (Crossref), https://doi.org/10.2351/1.1471565. [CrossRef] [Google Scholar]
  38. Wilson, J. Michael, et al. “Laser Deposited Coatings of Co-Cr-Mo onto Ti-6Al-4V and SS316L Substrates for Biomedical Applications.” Journal of Biomedical Materials Research. Part B, Applied Biomaterials, vol. 101, no. 7, Oct. 2013, pp. 1124–32. PubMed, https://doi.org/10.1002/jbm.b.32921. [CrossRef] [PubMed] [Google Scholar]
  39. Song, Y., et al. “Measurements of the Mechanical Response of Unidirectional 3D-Printed PLA.” Materials & Design, vol. 123, June 2017, pp. 154–64. ScienceDirect, https://doi.org/10.1016/j.matdes.2017.03.051 . [CrossRef] [Google Scholar]
  40. Singh, Rupinder, et al. “Development of In-House Composite Wire Based Feed Stock Filaments of Fused Deposition Modelling for Wear-Resistant Materials and Structures.” Composites Part B: Engineering, vol. 98, Aug. 2016, pp. 244–49. ScienceDirect, https://doi.org/10.1016/j.compositesb.2016.05.038 . [CrossRef] [Google Scholar]
  41. Singh, Rupinder, et al. “On the Wear Properties of Nylon6-SiC-Al2O3 Based Fused Deposition Modelling Feed Stock Filament.” Composites Part B: Engineering, vol. 119, June 2017, pp. 125–31. ScienceDirect, https://doi.org/10.1016/j.compositesb.2017.03.042. [CrossRef] [Google Scholar]
  42. Nguyen, Q. T., et al. “Fire Performance of Prefabricated Modular Units Using Organoclay/Glass Fibre Reinforced Polymer Composite.” Construction and Building Materials, vol. 129, Dec. 2016, pp. 204–15. ScienceDirect, https://doi.org/10.1016/j.conbuildmat.2016.10.100 . [CrossRef] [Google Scholar]
  43. Song, Jianan, et al. “High Thermal Conductivity and Stretchability of Layer-by-Layer Assembled Silicone Rubber/Graphene Nanosheets Multilayered Films.” Composites Part A: Applied Science and Manufacturing, vol. 105, Feb. 2018, pp. 1–8. ScienceDirect, https://doi.org/10.1016/j.compositesa.2017.11.001. [CrossRef] [Google Scholar]
  44. Postiglione, Giovanni, et al. “Conductive 3D Microstructures by Direct 3D Printing of Polymer/Carbon Nanotube Nanocomposites via Liquid Deposition Modeling.” Composites Part A: Applied Science and Manufacturing, vol. 76, Sept. 2015, pp. 110–14. ScienceDirect, https://doi.org/10.1016/j.compositesa.2015.05.014 . [CrossRef] [Google Scholar]
  45. Yang, Jong-uk, et al. “Selective Metallization on Copper Aluminate Composite via Laser Direct Structuring Technology.” Composites Part B: Engineering, vol. 110, Feb. 2017, pp. 361–67. ScienceDirect, https://doi.org/10.1016/j.compositesb.2016.11.041 . [CrossRef] [Google Scholar]
  46. Sheydaeian, Esmat, and Ehsan Toyserkani. “A New Approach for Fabrication of Titanium-Titanium Boride Periodic Composite via Additive Manufacturing and Pressure-Less Sintering.” Composites Part B: Engineering, vol. 138, Apr. 2018, pp. 140–48. ScienceDirect, https://doi.org/10.1016/j.compositesb.2017.11.035 . [CrossRef] [Google Scholar]
  47. Khoshnevis, B., and G. Bekey. Automated Construction Using Contour Crafting: Applications on Earth and Beyond. Sept. 2002. www.nist.gov, https://www.nist.gov/publications/automated-construction-using-contour-crafting-applications-earth-and-beyond. [Google Scholar]
  48. Ackland, David C., et al. “A Personalized 3D-Printed Prosthetic Joint Replacement for the Human Temporomandibular Joint: From Implant Design to Implantation.” Journal of the Mechanical Behavior of Biomedical Materials, vol. 69, May 2017, pp. 404–11. PubMed, https://doi.org/10.1016/j.jmbbm.2017.01.048 . [CrossRef] [PubMed] [Google Scholar]
  49. Banks, Jim. “Adding Value in Additive Manufacturing: Researchers in the United Kingdom and Europe Look to 3D Printing for Customization.” IEEE Pulse, vol. 4, no. 6, Dec. 2013, pp. 22–26. PubMed, https://doi.org/10.1109/MPUL.2013.2279617 . [CrossRef] [PubMed] [Google Scholar]
  50. NIH 3D Print Exchange | A Collection of Biomedical 3D Printable Files and 3D Printing Resources Supported by the National Institutes of Health (NIH). https://3dprint.nih.gov/. Accessed 6 Nov. 2021. [Google Scholar]
  51. Zopf, David A., et al. “Bioresorbable Airway Splint Created with a Three-Dimensional Printer.” The New England Journal of Medicine, vol. 368, no. 21, May 2013, pp. 2043–45. PubMed, https://doi.org/10.1056/NEJMc1206319 . [CrossRef] [PubMed] [Google Scholar]
  52. Cubo, Nieves, et al. “3D Bioprinting of Functional Human Skin: Production and in Vivo Analysis.” Biofabrication, vol. 9, no. 1, Dec. 2016, p. 015006. PubMed, https://doi.org/10.1088/1758-5090/9/1/015006 . [CrossRef] [PubMed] [Google Scholar]
  53. Keriquel, Virginie, et al. “In Situ Printing of Mesenchymal Stromal Cells, by Laser-Assisted Bioprinting, for in Vivo Bone Regeneration Applications.” Scientific Reports, vol. 7, no. 1, May 2017, p. 1778. www.nature.com, https://doi.org/10.1038/s41598-017-01914-x . [CrossRef] [PubMed] [Google Scholar]
  54. Hollister, Scott J. “Porous Scaffold Design for Tissue Engineering.” Nature Materials, vol. 4, no. 7, July 2005, pp. 518–24. PubMed, https://doi.org/10.1038/nmat1421. [CrossRef] [PubMed] [Google Scholar]
  55. Minas, Clara, et al. “3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics.” Advanced Materials, vol. 28, no. 45, 2016, pp. 9993–99. Wiley Online Library, https://doi.org/10.1002/adma.201603390 . [CrossRef] [PubMed] [Google Scholar]
  56. Carroll, Beth E., et al. “Anisotropic Tensile Behavior of Ti-6Al-4V Components Fabricated with Directed Energy Deposition Additive Manufacturing.” Acta Materialia, vol. 87, Apr. 2015, pp. 309–20. pennstate.pure.elsevier.com, https://doi.org/10.1016/j.actamat.2014.12.054 . [CrossRef] [Google Scholar]
  57. Tang, Hwa-Hsing, and Hsiao-Chuan Yen. “Slurry-Based Additive Manufacturing of Ceramic Parts by Selective Laser Burn-Out.” Journal of the European Ceramic Society, vol. 35, no. 3, Mar. 2015, pp. 981–87. ScienceDirect, https://doi.org/10.1016/j.jeurceramsoc.2014.10.019 . [CrossRef] [Google Scholar]
  58. Cooke, William, et al. “Anisotropy, Homogeneity and Ageing in an SLS Polymer.” Rapid Prototyping Journal, vol. 17, no. 4, Jan. 2011, pp. 269–79. Emerald Insight, https://doi.org/10.1108/13552541111138397 . [CrossRef] [Google Scholar]
  59. Guessasma, Sofiane, et al. “Anisotropic Damage Inferred to 3D Printed Polymers Using Fused Deposition Modelling and Subject to Severe Compression.” European Polymer Journal, vol. 85, 2016, pp. 324–40. HAL Archives Ouvertes, https://doi.org/10.1016/j.eurpolymj.2016.10.030 . [CrossRef] [Google Scholar]
  60. Quan, Zhenzhen, et al. “Printing Direction Dependence of Mechanical Behavior of Additively Manufactured 3D Preforms and Composites.” Composite Structures, vol. 184, Jan. 2018, pp. 917–23. ScienceDirect, https://doi.org/10.1016/j.compstruct.2017.10.055 . [CrossRef] [Google Scholar]
  61. Oropallo, William, and Les A. Piegl. “Ten Challenges in 3D Printing.” Engineering with Computers, vol. 32, no. 1, Jan. 2016, pp. 135–48. Springer Link, https://doi.org/10.1007/s00366-015-0407-0. [CrossRef] [Google Scholar]
  62. Zadpoor, Amir A., and Jos Malda. “Additive Manufacturing of Biomaterials, Tissues, and Organs.” Annals of Biomedical Engineering, vol. 45, no. 1, Jan. 2017, pp. 1–11. PubMed, https://doi.org/10.1007/s10439-016-1719-y . [CrossRef] [PubMed] [Google Scholar]
  63. Murphy, Sean V., and Anthony Atala. “3D Bioprinting of Tissues and Organs.” Nature Biotechnology, vol. 32, no. 8, Aug. 2014, pp. 773–85. www.nature.com, https://doi.org/10.1038/nbt.2958 . [CrossRef] [PubMed] [Google Scholar]
  64. Jardini, André Luiz, et al. “Cranial Reconstruction: 3D Biomodel and Custom-Built Implant Created Using Additive Manufacturing.” Journal of Cranio-Maxillofacial Surgery, vol. 42, no. 8, Dec. 2014, pp. 1877–84. ScienceDirect, https://doi.org/10.1016/j.jcms.2014.07.006. [CrossRef] [Google Scholar]
  65. “Layer by Layer.” MIT Technology Review, https://www.technologyreview.com/2011/12/19/20869/layer-by-layer/. Accessed 5 Nov. 2021. [Google Scholar]
  66. Logistics For A 3D Printed World: The Democratization Of Manufacturing | GE News. https://www.ge.com/news/reports/seeing-logistics-3d-democratization-manufacturing. Accessed 6 Nov. 2021. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.