Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01292 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202343001292 | |
Published online | 06 October 2023 |
- IDF Diabetes Atlas 2022 Reports. International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, Belgium: 2021. Available at: https://www.diabetesatlas.org [Google Scholar]
- Selvachandran, G., Quek, S.G., Paramesran, R. et al.: Developments in the detection of diabetic retinopathy: a state-of-the-art review of computer-aided diagnosis and machine learning methods. Artificial Intelligence Review (2022). [Google Scholar]
- Babenko, B., Mitani, A., Traynis, I. et al.: Detection of signs of disease in external photographs of the eyes via deep learning. Nature Biomedical Engineering 6, 1370–1383 (2022) [CrossRef] [PubMed] [Google Scholar]
- Huang, X., Wang, H., She, C., Feng, J., et al: Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Frontiers in Endocrinology. 13, 946915 (2022) [CrossRef] [Google Scholar]
- Das, S., Kharbanda, K., Raman, S.M.R., Dhas, E.: Deep learning architecture based on segmented fundus image features for classification of diabetic retinopathy. Biomedical Signal Processing and Control 68, 102600 (2021) [CrossRef] [Google Scholar]
- Haloi M, Dandapat S, Sinha R. A Gaussian scale space approach for exudates detection, classification and severity prediction. arXiv preprint arXiv:1505.00737, 2015. [Google Scholar]
- Alban M, Gilligan T. Automated detection of diabetic retinopathy using fluorescein angiography photographs. Report of Stanford education. 2016. [Google Scholar]
- Zhou K, Gu Z, Liu W, Luo W, Cheng J, Gao S. Multi-cell multi-task convolutional neural networks for diabetic retinopathy grading. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018:2724-2727. [Google Scholar]
- Qomariah DUN, Tjandrasa H, Fatichah C. Classification of diabetic retinopathy and normal retinal images using CNN and SVM. 2019 12th InternationalConference on Information & Communication Technology and System (ICTS). IEEE, 2019:152-157. [Google Scholar]
- Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z. Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021:10012-10022. [Google Scholar]
- Bora, A., Balasubramanian, S., Babenko, B. et al, (2021) Predicting the risk of developing diabetic retinopathy using deep learning. Lancet Digit Health. 3(1), e10-e19. doi: 10.1016/S2589-7500(20)30250-8. (2021) PMID: 33735063. [PubMed] [Google Scholar]
- Tang F, Luenam P, Ran AR et al. Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmoscope Images: A Multicenter Deep Learning Analysis. Ophthalmol Retina. 2021 Nov;5(11):1097-1106. [CrossRef] [Google Scholar]
- Hacisoftaoglu, R., Karakaya, & M. Sallam. Deep Learning Frameworks for Diabetic Retinopathy Detection with Smartphone-based Retinal Imaging Systems. Pattern Recognition Letters. 135, 2020. [Google Scholar]
- Pratt H, Coenen F, Broadbent DM, Harding SP, Zheng Y (2016) Convolutional neural networks for diabetic retinopathy. Procedia Comput Sci 90:200–205. https://doi.org/10.1016/j.procs.2016.07.014 [CrossRef] [Google Scholar]
- Xu K, Feng D, Mi H (2017) Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules 22(12):2054. [CrossRef] [PubMed] [Google Scholar]
- Karthik, Maggie, Dane, S.: APTOS 2019 Blindness Detection, Kaggle (2019). https://kaggle.com/competitions/aptos2019-blindness-detection [Google Scholar]
- Reguant, R., Brunak, S., Saha, S. Understanding inherent image features in CNN-based assessment of diabetic retinopathy. Sci. Rep. 11(1), 1– 12 (2021) [NASA ADS] [CrossRef] [Google Scholar]
- Chollet, François. “Xception: Deep learning with depth-wise separable convolutions.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. [Google Scholar]
- Xia, Xiaoling, Cui Xu, and Bing Nan. “Inception-v3 for flower classification.” 2017 2nd international conference on image, vision and computing (ICIVC). IEEE, 2017 [Google Scholar]
- Sahlsten, J., Jaskari, J., Kivinen, J. et al. Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading. Sci Rep 9, 10750, 2019. [CrossRef] [PubMed] [Google Scholar]
- AlZoman, R.M., Alenazi, M.J.F. A Comparative Study of Traffic Classification Techniques for Smart City Networks. Sensors, 21, 4677, 2021. https://doi.org/10.3390/s21144677. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.