Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01296
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202343001296
Published online 06 October 2023
  1. Gupta K, Laubscher RF. Sustainable machining of titanium alloys: a critical review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2017; 231(14): 2543-60 . https://doi.org/10.1177/0954405416634278 [CrossRef] [Google Scholar]
  2. Sílvia RC, Lauro CH, Ana H, Davim JP. Development of FEM-based digital twins for machining difficult-to-cut materials: A roadmap for sustainability. Journal of Manufacturing Processes 2022 ; 75: 739-66. https://doi.org/10.1016/j. jmapro.2022.01.027 [CrossRef] [Google Scholar]
  3. Sivaiah P, Chakradhar D, Narayanan RG. Sustainable manufacturing strategies in machining. InSustainable Manufacturing Processes 2023; 1: 113-154. https://doi.org/10.1016/B978-0-323-99990-8.00013-8 [CrossRef] [Google Scholar]
  4. Singh G, Singh S, Aggarwal V. Sustainable Machining Aspects of Minimum Quantity Lubrication During Turning of EN-31 Steel Utilizing Singular and Dual Lubrication Nozzles. InSustainable Development Through Engineering Innovations: Select Proceedings of SDEI 2020 ;2021: 527-538. https://doi.org/10.1007/978-981-15-9554-7_48 [Google Scholar]
  5. Sangwan KS, Mittal VK. A bibliometric analysis of green manufacturing and similar frameworks. Management of Environmental Quality: An International Journal 2015; 1477-7835 . https://doi.org /10.1108/MEQ-02-2014-0020. [Google Scholar]
  6. Herrmann C, Schmidt C, Kurle D, Blume S, Thiede S. Sustainability in manufacturing and factories of the future. International Journal of precision engineering and manufacturing-green technology 2014; 1:283-92.https://doi.org /10.1007/s40684-014-0034-z [CrossRef] [Google Scholar]
  7. Hegab H, Salem A, Taha HA. A Decision-Making Approach for Sustainable Machining Processes Using Data Clustering and Multi-Objective Optimization. Sustainability 2022;14(24):16886. https://doi.org/10.3390/su142416886 [CrossRef] [Google Scholar]
  8. Yucel E, Gunay M. An evaluation on machining processes for sustainable manufacturing. Gazi University Journal of Science 2013; 26(2): 241-52. [Google Scholar]
  9. Deif AM. A system model for green manufacturing. Journal of cleaner production 2011; 19(14): 1553-9. https://doi.org/10.1016/j.jclepro.2011.05.022 [CrossRef] [Google Scholar]
  10. Fernando R, Gamage J, Karunathilake H. Sustainable machining: environmental performance analysis of turning. International Journal of Sustainable Engineering. 2022; 15(1):15-34. https://doi.org/10.1080/19397038.2021.1995524 [CrossRef] [Google Scholar]
  11. Chandel RS, Kumar R, Kapoor J. Sustainability aspects of machining operations: A summary of concepts. Materials Today: Proceedings 2022; 50:716-27.https://doi.org/10.1016/j.matpr.2021.04.624 [CrossRef] [Google Scholar]
  12. Zhang T, Owodunni O, Gao J. Scenarios in multi-objective optimisation of process parameters for sustainable machining. Procedia CIRP. 2015; 26: 373-8. https://doi.org/10.1016/j.procir.2014.07.186 [CrossRef] [Google Scholar]
  13. Khatai S, Sahoo AK, Kumar R, Panda A. On Machining behaviour of various cutting Inserts: A review on hardened steel. Materials Today: Proceedings 2022; 62(6):3485-3492. https://doi.org/10.1016/j.matpr.2022.04.301 [CrossRef] [Google Scholar]
  14. König W, Berktold A, Koch KF. Turning versus grinding–a comparison of surface integrity aspects and attainable accuracies. CIRP annals 1993 ; 42(1):39-43.https://doi.org/10.1016/S0007-8506(07)62387-7 [CrossRef] [Google Scholar]
  15. Gaitonde VN, Karnik SR, Figueira L, Davim JP. Performance comparison of conventional and wiper ceramic inserts in hard turning through artificial neural network modeling. The International Journal of Advanced Manufacturing Technology 2011;52:101-14. https://doi.org/10.1007/s00170-010-2714-3 [CrossRef] [Google Scholar]
  16. Khatai S, Kumar R, Sahoo AK. HARD TURNING ASSESSMENT ON EN31 STEEL IN DRY AND WET COOLING ENVIRONMENTS USING GREY-FUZZY HYBRID OPTIMIZATION APPROACH. International Journal of Modern Manufacturing Technologies 2021; 13(2):55-62. https://doi.org/10.54684/ijmmt.2021.13.2.55 [CrossRef] [Google Scholar]
  17. Umbrello D, Jayal AD, Caruso S, Dillon OW, Jawahir IS. Modeling of white and dark layer formation in hard machining of AISI 52100 bearing steel. Machining Science and Technology 2010 ;14(1):128-47. https://doi.org/10.1080/10910340903586525 [CrossRef] [Google Scholar]
  18. Khatai S, Kumar R, Sahoo AK, Panda A. Investigation on tool wear and chip morphology in hard turning of EN 31 steel using AlTiN-PVD coated carbide cutting tool. Materials Today: Proceedings 2022 ;59:1810-6. https://doi.org/10.1016/j.matpr.2022.04.387 [CrossRef] [Google Scholar]
  19. Qasim A, Nisar S, Shah A, Khalid MS, Sheikh MA. Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA. Simulation Modelling Practice and Theory 2015;59:36-51. https://doi.org/10.1016/j.simpat.2015.08.004 [CrossRef] [Google Scholar]
  20. Mia M, Dey PR, Hossain MS, Arafat MT, Asaduzzaman M, Ullah MS, Zobaer ST. Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition. Measurement 2018 ;122:380-91. https://doi.org/10.1016/j.measurement.2018.02.016 [CrossRef] [Google Scholar]
  21. Aouici H, Yallese MA, Chaoui K, Mabrouki T, Rigal JF. Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization. Measurement 2012; 45(3):344-53. https://doi.org/10.1016/j.measurement.2011.11.011 [CrossRef] [Google Scholar]
  22. Sahoo AK, Sahoo B. Performance studies of multilayer hard surface coatings (TiN/TiCN/Al2O3/TiN) of indexable carbide inserts in hard machining: Part-II (RSM, grey relational and techno economical approach). Measurement 2013 ;46(8):2868-84. https://doi.org/10.1016/j.measurement.2012.09.023 [CrossRef] [Google Scholar]
  23. Alok A, Das M. Multi-objective optimization of cutting parameters during sustainable dry hard turning of AISI 52100 steel with newly develop HSN2-coated carbide insert. Measurement 2019;133:288-302. https://doi.org/10.1016/j.measurement.2018.10.009 [CrossRef] [Google Scholar]
  24. Das A, Patel SK, Hotta TK, Biswal BB. Statistical analysis of different machining characteristics of EN-24 alloy steel during dry hard turning with multilayer coated cermet inserts. Measurement 2019; 134:123-41. https://doi.org/10.1016/j.measurement.2018.10.065 [CrossRef] [Google Scholar]
  25. Kuntoğlu M, Sağlam H. Investigation of progressive tool wear for determining of optimized machining parameters in turning. Measurement 2019 ;140: 427-36 . https://doi.org/10.1016/j.measurement.2019.04.022 [CrossRef] [Google Scholar]
  26. Subbaiah KV, Raju C, Suresh C. Parametric analysis and optimization of hard turning at different levels of hardness using wiper ceramic insert. Measurement 2020; 158: 107712. https://doi.org/10.1016/j.measurement.2020.107712 [CrossRef] [Google Scholar]
  27. Bhandarkar LR, Behera M, Mohanty PP, Sarangi SK. Experimental investigation and multi-objective optimization of process parameters during machining of AISI 52100 using high performance coated tools. Measurement 2021;172: 108842. https://doi.org/10.1016/j.measurement.2020.108842 [CrossRef] [Google Scholar]
  28. Bouacha K, Yallese MA, Khamel S, Belhadi S. Analysis and optimization of hard turning operation using cubic boron nitride tool. International Journal of Refractory Metals and Hard Materials 2014; 45:160-78. https://doi.org/10.1016/j.ijrmhm.2014.04.014 [CrossRef] [Google Scholar]
  29. Umamaheswarrao P, Raju DR, Suman KN, Sankar BR. Multi objective optimization of process parameters for hard turning of AISI 52100 steel using Hybrid GRA-PCA. Procedia computer science 2018;133:703-10. https://doi.org/10.1016/j.procs. 2018.07.129 [CrossRef] [Google Scholar]
  30. Narayanan NS, Baskar N, Ganesan M. Multi objective optimization of machining parameters for hard turning OHNS/AISI H13 material, using genetic algorithm. Materials Today: Proceedings 2018; 5(2): 6897-905. https://doi.org/10.1016/j.matpr.2017.11.351 [CrossRef] [Google Scholar]
  31. Umamaheswarrao P, Raju DR, Suman KN, Sankar BR. Topsis based optimization of process parameters while hard turning of AISI 52100 steel. Acta Mechanica Malaysia 2019; 2(2):28-31. http://doi.org/10.26480/amm.02.2019.28.31 [CrossRef] [Google Scholar]
  32. Umbrello D, Outeiro JC, M'saoubi R, Jayal AD, Jawahir IS. A numerical model incorporating the microstructure alteration for predicting residual stresses in hard machining of AISI 52100 steel. CIRP annals 2010 ; 59(1): 113-6. https://doi.org/10.1016/j.cirp.2010.03.061 [CrossRef] [Google Scholar]
  33. Sharma V, Kumar P, Misra JP. Cutting force predictive modelling of hard turning operation using fuzzy logic. Materials Today: Proceedings 2020 ; 26: 740-4. https://doi.org/10.1016/j.matpr.2020.01.018 [CrossRef] [Google Scholar]
  34. Kumar CS, Patel SK. Experimental and numerical investigations on the effect of varying AlTiN coating thickness on hard machining performance of Al2O3-TiCN mixed ceramic inserts. Surface and coatings technology. 2017 Jan 15;309:266-81. https://doi.org/10.1016/j.surfcoat.2016.11.080 [CrossRef] [Google Scholar]
  35. Sahoo AK, Sahoo B. Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts. Measurement 2012 ;45(8): 2153-65. https://doi.org/10.1016/j.measurement. 2012.05.015 [CrossRef] [Google Scholar]
  36. Kumar CS, Patel SK. Hard machining performance of PVD AlCrN coated Al2O3/TiCN ceramic inserts as a function of thin film thickness. Ceramics International 2017; 43(16):13314-29. https://doi.org/10.1016/j.ceramint.2017.07.030 [CrossRef] [Google Scholar]
  37. Tekkaya B, Meurer M, Dölz M, Könemann M, Münstermann S, Bergs T. Modeling of microstructural workpiece rim zone modifications during hard machining. Journal of Materials Processing Technology 2023; 311:117815. https://doi.org/10.1016/j. jmatprotec.2022.117815 [CrossRef] [Google Scholar]
  38. Agrawal A, Goel S, Rashid WB, Price M. Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC). Applied Soft Computing 2015;30:279-86. https://doi.org/10.1016/j.asoc.2015.01.059 [CrossRef] [Google Scholar]
  39. Sivarajan S, Elango M, Sasikumar M, Doss AS. Prediction of surface roughness in hard machining of EN31 steel with TiAlN coated cutting tool using fuzzy logic. Materials Today: Proceedings. 2022; 65: 35-41. https://doi.org/10.1016/j.matpr.2022.04.161 [CrossRef] [Google Scholar]
  40. Li B, Zhang S, Hu R, Zhang X. Dislocation density and grain size evolution in hard machining of H13 steel: Numerical and experimental investigation. Journal of Materials Research and Technology 2020; 9(3): 4241-54. https://doi.org/10.1016/j.jmrt.2020.02.051 [CrossRef] [Google Scholar]
  41. Kumar R, Sahoo AK, Das RK, Panda A, Mishra PC. Modelling of flank wear, surface roughness and cutting temperature in sustainable hard turning of AISI D2 steel. Procedia Manufacturing 2018; 20: 406-13. https://doi.org/10.1016/j.promfg.2018.02.059 [CrossRef] [Google Scholar]
  42. Mia M, Dhar NR. Prediction and optimization by using SVR, RSM and GA in hard turning of tempered AISI 1060 steel under effective cooling condition. Neural Computing and Applications 2019; 31: 2349--70. https://doi.org/10.1007/s00521-017-3192-4 [CrossRef] [Google Scholar]
  43. Khanna N, Wadhwa J, Pitroda A, Shah P, Schoop J, Sarıkaya M. Life cycle assessment of environmentally friendly initiatives for sustainable machining: A short review of current knowledge and a case study. Sustainable Materials and Technologies 2022 ;32:e00413. https://doi.org/10.1016/j.susmat.2022.e00413 [CrossRef] [Google Scholar]
  44. Sarikaya M, Gupta MK, Tomaz I, Krolczyk GM, Khanna N, Karabulut S, Prakash C, Buddhi D. Resource savings by sustainability assessment and energy modelling methods in mechanical machining process: A critical review. Journal of Cleaner Production 2022;370:133403. https://doi.org/10.1016/j.jclepro.2022.133403 [CrossRef] [Google Scholar]
  45. Kshitij G, Khanna N, Yıldırım ÇV, Dağlı S, Sarıkaya M. Resource conservation and sustainable development in the metal cutting industry within the framework of the green economy concept: An overview and case study. Sustainable Materials and Technologies 2022 ;34:e00507. https://doi.org/10.1016/j.susmat.2022.e00507 [CrossRef] [Google Scholar]
  46. Pimenov DY, Mia M, Gupta MK, Machado ÁR, Pintaude G, Unune DR, Khanna N, Khan AM, Tomaz Í, Wojciechowski S, Kuntoğlu M. Resource saving by optimization and machining environments for sustainable manufacturing: A review and future prospects. Renewable and Sustainable Energy Reviews 2022 ; 166: 112660. https://doi.org/10.1016/j.rser.2022.112660 [CrossRef] [Google Scholar]
  47. Zhou L, Li J, Li F, Meng Q, Li J, Xu X. Energy consumption model and energy efficiency of machine tools: a comprehensive literature review. Journal of Cleaner Production 2016 ;112: 3721-34. https://doi.org/10.1016/j.jclepro.2015.05.093 [CrossRef] [Google Scholar]
  48. Pereira O, Martín-Alfonso JE, Rodríguez A, Calleja A, Fernández-Valdivielso A, De Lacalle LL. Sustainability analysis of lubricant oils for minimum quantity lubrication based on their tribo-rheological performance. Journal of Cleaner Production 2017 Oct 15; 164:1419-29. https://doi.org/10.1016/j.jclepro.2017.07.078 [CrossRef] [Google Scholar]
  49. Jamil M, He N, Wei Z, Gupta MK, Khan AM. A novel quantifiable approach of estimating energy consumption, carbon emissions and cost factors in manufacturing of bearing steel based on triple bottom-line approach. Sustainable Materials and Technologies 2023; 36: e00593. https://doi.org/10.1016/j.susmat.2023.e00593 [CrossRef] [Google Scholar]
  50. Jawahir IS, Schoop J, Kaynak Y, Balaji AK, Ghosh R, Lu T. Progress toward modeling and optimization of sustainable machining processes. Journal of Manufacturing Science and Engineering 2020; 142(11):20-1130. https://doi.org/10.1115/1.4047926 [CrossRef] [Google Scholar]
  51. Shaikh MB, Ali M. Turning of steels under various cooling and lubrication techniques: a review of literature, sustainability aspects, and future scope. Engineering Research Express 2021; 3(4): 042001. https://doi.org/10.1088/2631-8695/ac2e10 [CrossRef] [Google Scholar]
  52. Liu ZY, Guo YB, Sealy MP, Liu ZQ. Energy consumption and process sustainability of hard milling with tool wear progression. Journal of Materials Processing Technology 2016; 229: 305-12. https://doi.org/10.1016/j.jmatprotec.2015.09.032 [CrossRef] [Google Scholar]
  53. Liu ZY, Guo YB, Sealy MP, Liu ZQ. Energy consumption and process sustainability of hard milling with tool wear progression. Journal of Materials Processing Technology 2016; 229: 305-12. https://doi.org/10.1016/j.jmatprotec.2015.09.032 [CrossRef] [Google Scholar]
  54. Khan SA, Anwar S, Ishfaq K, Afzal MZ, Ahmad S, Saleh M. Wear performance of modified inserts in hard turning of AISI D2 steel: A concept of one-step sustainable machining. Journal of Manufacturing Processes 2020; 60: 457-69. https://doi.org/10.1016/j.jmapro.2020.10.052 [CrossRef] [Google Scholar]
  55. Kim DM, Kim HI, Park HW. Tool wear, economic costs, and CO2 emissions analysis in cryogenic assisted hard-turning process of AISI 52100 steel. Sustainable Materials and Technologies 2021; 30: e00349. https://doi.org/10.1016/j.susmat.2021.e00349 [CrossRef] [Google Scholar]
  56. Fernandes ME, de Melo AC, de Oliveira AJ, Chesman C. Hard turning of AISI D6 tool steel under dry, wet and cryogenic conditions: An economic investigation aimed at achieving a sustainable machining approach. Cleaner Engineering and Technology 2020; 1: 100022. https://doi.org/10.1016/j.clet.2020.100022 [CrossRef] [Google Scholar]
  57. Abbas AT, Gupta MK, Soliman MS, Mia M, Hegab H, Luqman M, Pimenov DY. Sustainability assessment associated with surface roughness and power consumption characteristics in nanofluid MQL-assisted turning of AISI 1045 steel. The International Journal of Advanced Manufacturing Technology 2019; 105: 1311-27.https://doi.org/10.1007/s00170-019-04325-6 [CrossRef] [Google Scholar]
  58. Padhan S, Dash L, Behera SK, Das SR. Modeling and optimization of power consumption for economic analysis, energy-saving carbon footprint analysis, and sustainability assessment in finish hard turning under graphene nanoparticle–assisted minimum quantity lubrication. Process Integration and Optimization for Sustainability 2020; 4: 445-63.https://doi.org/10.1007/s41660-020-00132-9 [CrossRef] [Google Scholar]
  59. Khan AM, He N, Zhao W, Jamil M, Xia H, Meng L, Gupta MK. Cryogenic-LN2 and conventional emulsion assisted machining of hardened steel: Comparison from sustainability perspective. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture 2021;235(14):2310-22. https://doi.org/10.1177/0954405420971992 [CrossRef] [Google Scholar]
  60. Dash L, Padhan S, Das A, Das SR. Machinability investigation and sustainability assessment in hard turning of AISI D3 steel with coated carbide tool under nanofluid minimum quantity lubrication-cooling condition. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 202; 235(22): 6496-528. https://doi.org/10.1177/0954406221993844 [Google Scholar]
  61. Gürbüz H, Gönülaçar YE. Experimental and statistical investigation of the effects of MQL, dry and wet machining on machinability and sustainability in turning of AISI 4140 steel. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 2022; 236(5): 1808-23. https://doi.org/10.1177/09544089221076243 [CrossRef] [Google Scholar]
  62. Das A, Das SR, Panda A, Patel SK. Experimental investigation into machinability of hardened AISI D6 steel using newly developed AlTiSiN coated carbide tools under sustainable finish dry hard turning. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 2022; 236(5): 1889-905. https://doi.org/10.1177/09544089221078137 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.