Open Access
Issue
E3S Web Conf.
Volume 431, 2023
XI International Scientific and Practical Conference Innovative Technologies in Environmental Science and Education (ITSE-2023)
Article Number 05006
Number of page(s) 11
Section IT and Mathematical Modeling in the Environment
DOI https://doi.org/10.1051/e3sconf/202343105006
Published online 13 October 2023
  1. Y. L. Qu, et al., A New Model for Circular Cylindrical Kirchhoff–Love Shells Incorporating Microstructure and Flexoelectric Effects, Journal of Applied Mechanics 89(12), 121010 (2022) [CrossRef] [Google Scholar]
  2. G. Y. Zhang, X. L. Gao, A non-classical model for first-ordershear deformation circular cylindrical thin shells incorporating microstructure and surface energy effects, Mathematics and Mechanics of Solids, 26(9), 1294-1319 (2021) [CrossRef] [Google Scholar]
  3. S. O. Sargsyan, A. Zh. Farmanyan, Mathematical model of micropolar anisotropic (orthotropic) elastic thin shells, PNRPU Mechanics Bulletin, 3, 128-145 (2011) [Google Scholar]
  4. F. Daneshmand, M. Rafiei, S. R. Mohebpour, M. Heshmati, Stress and strain-inertia gradient elasticity in free vibration analysis of single walled carbon nanotubes with first order shear deformation shell theory, Appl. Math. Modelling, 37(16/17), 7983—8003 (2013) https://doi.org/10.1016/j.apm.2013.01.052 [CrossRef] [Google Scholar]
  5. K. Ghorbani, et al., Surface and size-dependent effects on the free vibration analysis of cylindrical shell based on Gurtin-Murdoch and nonlocal strain gradient theories, Journal of Physics and Chemistry of Solids, 129, 140-150 (2019) [CrossRef] [Google Scholar]
  6. L. Rao, et al., Free vibration analysis of a cylindrical micro-shell based on MCST, Alexandria Engineering Journal, 61(8), 6293-6303 (2022) [CrossRef] [Google Scholar]
  7. D. V. Scheible, A. Erbe, R. H. Blick, Evidence of a nanomechanical resonator being driven into chaotic responsevia the Ruelle–Takens route, Applied Physics Letters, 81, 1884—1886 (2002) [CrossRef] [Google Scholar]
  8. H. Safarpour, K. Mohammadi, M. Ghadiri, Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: a numerical solution, Journal of the Mechanical Behavior of Materials, 26(1-2), 9-–24 (2017) https://doi.org/10.1515/jmbm-2017-0010 [CrossRef] [Google Scholar]
  9. H. Safarpour, K. Mohammadi, M. Ghadiri, Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: a numerical solution, Journal of the Mechanical Behavior of Materials, 26(1-2), 9-24 (2017) [CrossRef] [Google Scholar]
  10. M. L. Dehsaraji, M. Arefi, A. Loghman, Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect, Defence Technology, 17(1), 119-134 (2021) [CrossRef] [Google Scholar]
  11. V. Eremeev, A nonlinear model of a mesh shell// Mechanics of Solids, 53(4), 464--469 (2018) https://doi.org/10.3103/S002565441804012X [CrossRef] [Google Scholar]
  12. E. Yu. Krylova, I. V. Papkova, O. A. Saltykova, V. A. Krysko, Features of complex oscillations of flexible micropolar mesh panels.Izvestiya of Saratov University. Mathematics, Mechanics, Informatics, 21(1), 48—59 (2021) doi.org/10.18500/1816-9791-2021-21-1-48-59 [Google Scholar]
  13. Th. Karman, Festigkeits probleme in Maschinenbau, Encykle. D. Math. Wiss. 4(4), 311—385 (1910) [Google Scholar]
  14. M. Ostrogradsky, Mem. de l'Acad, des Sci. de St-Petersbourg, 8(3), 33--48 (1850) [Google Scholar]
  15. W. Hamilton, Report of the Fourth Meeting// British Association for the Advancement of Science, 513—518 (1835) [Google Scholar]
  16. F. Yang, A. C. M. Chong, D. C. C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct, 39, 2731–2743 (2002) [CrossRef] [Google Scholar]
  17. G. I. Pshenichnov, The theory of thin elastic mesh shells and plates, Moscow, Nauka, 352 (1982) [Google Scholar]
  18. V. A. Krysko, J. Awrejcewicz, S. Komarov, A Nonlinear deformations of spherical panels subjected to transversal load action, Computer Methods in Applied Mechanics and Engineering, 194(27-29), 3108–3126 (2005) [CrossRef] [Google Scholar]
  19. A. V. Krysko, I. V. Papkova, V. A. Krysko, J. Awrejcewicz, Stability improvement of flexible shallow shells using neutron radiation, Materials, 13(14), 3187 (2020) [CrossRef] [Google Scholar]
  20. G. Y. Zhang, X. L. Gao, A. G. Littlefield, A non-classical model for circular cylindrical thin shells incorporating microstructure and surface energy effects, Acta Mechanica, 232, 2225-2248 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.