Open Access
Issue |
E3S Web Conf.
Volume 433, 2023
2023 The 6th International Conference on Renewable Energy and Environment Engineering (REEE 2023)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 7 | |
Section | Environmental Chemical Engineering and Environmental Impact Assessment of the Construction Industry | |
DOI | https://doi.org/10.1051/e3sconf/202343301002 | |
Published online | 09 October 2023 |
- T. Kunatsa, X. Xia, Co-digestion of water hyacinth, municipal solid waste and cow dung: A methane optimised biogas–liquid petroleum gas hybrid system, Appl Energy. 304 (2021) 117716. https://doi.org/10.1016/J.APENERGY.2021.117716. [CrossRef] [Google Scholar]
- W.A. Qazi, M.F.M. Abushammala, M.H. Azam, M.K. Younes, Waste-to-energy technologies: A literature review, Journal of Solid Waste Technology and Management. 44 (2018) 387–409. https://doi.org/10.5276/JSWTM.2018.387. [CrossRef] [Google Scholar]
- A. Al Jaber, C. Clini, R. Dixon, M. Eckhart, M. ElAshry, S. Fakir, C.G. Travesedo, D. Gupta, A. Haddouche, D. Hales, S.J. Hoskyns, H.-J. Koch, L. Junfeng, A. Development Bank, E.M. Galàn, P. Mubiru, N. Nakicenovic, K. Nassiep, R. Pachauri, W. Palz, H. Pelosse, L. Pitka-Kangas, M. Radka, P. Rae, T. Roholl, A.R. Ballesteros, S. Sawyer, G. Thompson, M. Folkecenter, P. Tulej, C.V. Santos, Renewable Energy Policy Network for the 21st Century Bindu Lohani Pradeep Monga Karsten Sach Federal Ministry for the Environment, Nature Conservation and Nuclear Safety Germany Ibrahim Togola Veerle Vandeweerd Energy and Environment Group United Nations Development Programme, (2010). [Google Scholar]
- S. Venkata Mohan, S. Dahiya, K. Amulya, R. Katakojwala, T.K. Vanitha, Can circular bioeconomy be fueled by waste biorefineries — A closer look, Bioresour Technol Rep. 7 (2019) 100277. https://doi.org/10.1016/J.BITEB.2019.100277. [Google Scholar]
- K.E. Miller, E. Grossman, B.J. Stuart, S.C. Davis, Pilot-scale biogas production in a temperate climate using variable food waste, Biomass Bioenergy. 138 (2020) 105568. https://doi.org/10.1016/J.BIOMBIOE.2020.105568. [Google Scholar]
- S.A. Neshat, M. Mohammadi, G.D. Najafpour, P. Lahijani, Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production, Renewable and Sustainable Energy Reviews. 79 (2017) 308–322. https://doi.org/10.1016/J.RSER.2017.05.137. [CrossRef] [Google Scholar]
- K.O. Olatunji, N.A. Ahmed, O. Ogunkunle, Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review, Biotechnology for Biofuels 2021 14:1. 14 (2021) 1–34. https://doi.org/10.1186/S13068-02102012-X. [Google Scholar]
- J.H. Ebner, R.A. Labatut, J.S. Lodge, A.A. Williamson, T.A. Trabold, Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects, Waste Management. 52 (2016) 286–294. https://doi.org/10.1016/J.WASMAN.2016.03.046. [CrossRef] [Google Scholar]
- H. Kaur, R.R. Kommalapati, Optimizing anaerobic co-digestion of goat manure and cotton gin trash using biochemical methane potential (BMP) test and mathematical modeling, SN Appl Sci. 3 (2021) 1–14. https://doi.org/10.1007/S42452-021-047061/TABLES/4. [CrossRef] [Google Scholar]
- Y. Deng, L. Qiu, Y. Shao, Y. Yao, Process Modeling and Optimization of Anaerobic CoDigestion of Peanut Hulls and Swine Manure Using Response Surface Methodology, Energy & Fuels. 33 (2019) 11021–11033. https://doi.org/10.1021/ACS.ENERGYFUELS.9B02381. [CrossRef] [Google Scholar]
- Official Methods of Analysis, 21st Edition (2019) AOAC INTERNATIONAL, (n.d.). https://www.aoac.org/official-methods-of-analysis-21st-edition-2019/ (accessed October 15, 2021). [Google Scholar]
- V. organischer Stoffe Substratcharakterisierung, VEREIN DEUTSCHER INGENIEURE Characterisation of the substrate, sampling, collection of material data, fermentation tests VDI 4630 VDI-RICHTLINIEN, 2016. www.vdi.de/richtlinien. [Google Scholar]
- A.O. Adebayo, S.O. Jekayinfa, & B. Linke, Anaerobic Co-Digestion of Cattle Slurry with Maize Stalk at Mesophilic Temperature, American Journal of Engineering Research. (n.d.) 2014. [Google Scholar]
- A.M. Buswell, H.F. Mueller, Mechanism of Methane Fermentation, Ind Eng Chem. 44 (2002) 550–552. https://doi.org/10.1021/IE50507A033. [Google Scholar]
- W. Li, H. Khalid, Z. Zhu, R. Zhang, G. Liu, C. Chen, E. Thorin, Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin, Appl Energy. 226 (2018) 1219–1228. https://doi.org/10.1016/J.APENERGY.2018.05.055. [CrossRef] [Google Scholar]
- J. Kainthola, A.S. Kalamdhad, V. V. Goud, Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste, Renew Energy. 149 (2020) 1352–1359. https://doi.org/10.1016/J.RENENE.2019.10.124. [CrossRef] [Google Scholar]
- X. Wang, G. Yang, Y. Feng, G. Ren, X. Han, Optimizing feeding composition and carbon– nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw, Bioresour Technol. 120 (2012) 78–83. https://doi.org/10.1016/J.BIORTECH.2012.06.058. [CrossRef] [PubMed] [Google Scholar]
- J. Webster, The Biochemistry of Silage (Second Edition). By P. McDonald, A. R. Henderson and S. J. E. Heron. Marlow, Bucks, UK: Chalcombe Publications, (1991), pp. 340, £49.50, ISBN 0 948617-225., Exp Agric. 28 (1992) 125–125. https://doi.org/10.1017/S0014479700023115. [Google Scholar]
- K.O. Olatunji, D.M. Madyira, N.A. Ahmed, O. Ogunkunle, Influence of alkali pretreatment on morphological structure and methane yield of Arachis hypogea shells, Biomass Conversion and Biorefinery 2022. (2022) 1–12. https://doi.org/10.1007/S13399-022-03271-W. [Google Scholar]
- K. Aboudi, X. Gómez -Quiroga, C.J. álvarez Gallego, L.I. Romero-García, Insights into Anaerobic Co-Digestion of Lignocellulosic Biomass (Sugar Beet By-Products) and Animal Manure in Long-Term Semi-Continuous Assays, Applied Sciences 2020, Vol. 10, Page 5126. 10 (2020) 5126. https://doi.org/10.3390/APP10155126. [Google Scholar]
- Z.E. Ilhan, A.K. Marcus, D.-W. Kang, B.E. Rittmann, R. Krajmalnik-Brown, pH-Mediated Microbial and Metabolic Interactions in Fecal Enrichment Cultures, MSphere. 2 (2017). https://doi.org/10.1128/MSPHERE.00047-17. [CrossRef] [Google Scholar]
- A.F. Aili Hamzah, M.H. Hamzah, H. Che Man, S. Izhar, N.S. Jamali, F. Najmi, Anaerobic Codigestion of Pineapple Wastes with Cow Dung: Effect of Different Total Solid Content on Biomethane Yield, Advances in Agricultural and Food Research Journal. 1 (2020). https://doi.org/10.36877/aafrj.a0000109. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.