Open Access
Issue
E3S Web Conf.
Volume 434, 2023
4th International Conference on Energetics, Civil and Agricultural Engineering (ICECAE 2023)
Article Number 02006
Number of page(s) 10
Section Civil Engineering
DOI https://doi.org/10.1051/e3sconf/202343402006
Published online 12 October 2023
  1. Lin H., Suleiman M. T., Brown D. G. and Kavazanjian E., Jr. Mechanical behavior of sands treated by microbially induced carbonate precipitation Journal of Geotechnical and Geoenvironmental Engineering 142 04015066 (2016) [CrossRef] [Google Scholar]
  2. Van Paassen L. A., Biogrout, ground improvement by microbial induced carbonate precipitation Delft University of Technology, Delft, Netherlands (2009) [Google Scholar]
  3. Cheng L., Shahin M. A. and Mujah D., Influence of key environmental conditions on microbially induced cementation for soil stabilization Journal of Geotechnical and Geoenvironmental Engineering 143 04016083 (2017) [CrossRef] [Google Scholar]
  4. Wu S., Li B. and Chu J., Stress-dilatancy behavior of MICP-treated sand International Journal of Geomechanics 21 04020264 (2021) [CrossRef] [Google Scholar]
  5. Almajed A., Khodadadi Tirkolaei H. and Kavazanjian E., Jr. Baseline investigation on enzyme-induced calcium carbonate precipitation Journal of Geotechnical and Geoenvironmental Engineering 144 04018081 (2018) [CrossRef] [Google Scholar]
  6. Park S.-S., Choi S.-G. and Nam I.-H., Effect of plant-induced calcite precipitation on the strength of sand Journal of Materials in Civil Engineering 26 06014017 (2014) [CrossRef] [Google Scholar]
  7. Yasuhara H., Neupane D., Hayashi K. and Okamura M., Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation Soils and Foundations 52 539–549 (2012) [CrossRef] [Google Scholar]
  8. Carmona J. P., Venda Oliveira P. J., Lemos L. J. and Pedro A. M., Improvement of a sandy soil by enzymatic calcium carbonate precipitation Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 171 3–15 (2018) [CrossRef] [Google Scholar]
  9. DeJong J. T., Gomez M. G., Waller J. T. and Viggiani G., Influence of bio-cementation on the shearing behavior of sand using X-ray computed tomography Geotechnical Frontiers 2017 871–880 (2017) [CrossRef] [Google Scholar]
  10. Lee L. M., Ng W. S., Tan C. K. and Hii S. L., Bio-mediated soil improvement under various concentrations of cementation reagent Applied mechanics and materials 204 326–329 (2012) [CrossRef] [Google Scholar]
  11. Chandra A. and Ravi K., Application of enzyme-induced carbonate precipitation (EICP) to improve the shear strength of different type of soils Problematic Soils and Geoenvironmental Concerns: Proceedings of IGC 2018 617–632 (2021) [CrossRef] [Google Scholar]
  12. Nafisi A., Safavizadeh S. and Montoya B. M., Influence of microbe and enzyme-induced treatments on cemented sand shear response Journal of Geotechnical and Geoenvironmental Engineering 145 06019008 (2019) [CrossRef] [Google Scholar]
  13. Nemati M. and Voordouw G., Modification of porous media permeability, using calcium carbonate produced enzymatically in situ Enzyme and microbial technology 33 635–642 (2003) [CrossRef] [Google Scholar]
  14. Nafisi A., Khoubani A., Montoya B. M. and Evans M., The effect of grain size and shape on mechanical behavior of MICP sand I: Experimental study Proceedings of the 11th National Conf. in Earthquake Eng., Earthquake Eng. Research Ins. Los Angeles (2018) [Google Scholar]
  15. Mortensen B. and DeJong J., Strength and stiffness of MICP treated sand subjected to various stress paths GeoFrontiers 2011: Advances in geotechnical engineering 4012–4020 (2011) [Google Scholar]
  16. Lin H., Suleiman M. T. and Brown D. G., Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP) Soils and Foundations 60 944–961 (2020) [CrossRef] [Google Scholar]
  17. Van Paassen L. A., Van Loosdrecht M., Pieron M., Mulder A., Ngan-Tillard D. and Van der Linden, T., Strength and deformation of biologically cemented sandstone ISRM Regional Symposium-EUROCK 2009 (2009) [Google Scholar]
  18. Van Paassen L., Bio-mediated ground improvement: from laboratory experiment to pilot applications GeoFrontiers; Advances in Geotechnical Engineering 4099–4108 (2011) [Google Scholar]
  19. DeJong J., Martinez B., Ginn T., Hunt C., Major D. and Tanyu B., Development of a scaled repeated five-spot treatment model for examining microbial induced calcite precipitation feasibility in field applications Geotechnical Testing Journal 37 424–435 (2014) [Google Scholar]
  20. Van M., Van den Ham, G., Blauw, M., Latil, M., Benahmed, N. and Philippe, P., Preventing internal erosion phenomena with the BioGrout process 15th European Conference on Soil Mechanics and Geotechnical Engineering 1079–1084 (2011) [Google Scholar]
  21. Liu P., Shao G.-H. and Huang R.-P., Study of the interactions between S. pasteurii and indigenous bacteria and the effect of these interactions on the MICP Arabian Journal of Geosciences 12 1–10 (2019) [CrossRef] [Google Scholar]
  22. Gat D., Ronen Z. and Tsesarsky M., Soil bacteria population dynamics following stimulation for ureolytic microbial-induced CaCO3 precipitation Environmental science & technology 50 616–624 (2016) [CrossRef] [PubMed] [Google Scholar]
  23. Van Paassen L. A., Ghose R., van der Linden T. J., van der Star W. R. and van Loosdrecht M. C., Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment Journal of geotechnical and geoenvironmental engineering 136 1721–1728 (2010) [CrossRef] [Google Scholar]
  24. Van Paassen L., Harkes M., Van Zwieten G., Van der Zon, W., Van der Star, W. and Van Loosdrecht, M., Scale up of BioGrout: a biological ground reinforcement method 17th International Conference on Soil Mechanics and Geotechnical Engineering (Volumes 1, 2, 3 and 4) 2328–2333 (2009) [Google Scholar]
  25. Zango M. U., Kassim K. A., Ahmad K. and Muhammed A. S., Improvement of strength behaviour of residual soil via enzymatically induced calcite precipitation International Journal of Geosynthetics and Ground Engineering 7 1–15 (2021) [CrossRef] [Google Scholar]
  26. Marzadori C., Miletti S., Gessa C. and Ciurli S., Immobilization of jack bean urease on hydroxyapatite: urease immobilization in alkaline soils Soil biology and biochemistry 30 1485–1490 (1998) [CrossRef] [Google Scholar]
  27. Pettit N., Smith A., Freedman R. and Burns R. G., Soil urease: activity, stability and kinetic properties Soil Biology and Biochemistry 8 479–484 (1976) [CrossRef] [Google Scholar]
  28. Almajed A., Tirkolaei H. K., Kavazanjian E. and Hamdan N., Enzyme induced biocementated sand with high strength at low carbonate content Scientific reports 9 1–7 (2019) [CrossRef] [PubMed] [Google Scholar]
  29. Cui M.-J., Lai H.-J., Hoang T. and Chu J., One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement Acta Geotechnica 16 481–489 (2021) [CrossRef] [Google Scholar]
  30. Song J. Y., Sim Y., Jin K.-N. and Yun T.S., Evaluation of soil improvement by carbonate precipitation with urease Journal of the Korean Geotechnical Society 33 61–69 (2017) [Google Scholar]
  31. Muhammed A., Kassim K., Ahmad K., Zango M., Chong C. and Makinda J., Influence of multiple treatment cycles on the strength and microstructure of biocemented sandy soil International Journal of Environmental Science and Technology 18 3427–3440 (2021) [CrossRef] [Google Scholar]
  32. Lee S. and Kim J., An experimental study on enzymatic-induced carbonate precipitation using yellow soybeans for soil stabilization KSCE Journal of Civil Engineering 24 2026–2037 (2020) [CrossRef] [Google Scholar]
  33. Shu S., Yan B., Ge B., Li S. and Meng H., Factors Affecting Soybean Crude Urease Extraction and Biocementation via Enzyme-Induced Carbonate Precipitation (EICP) for Soil Improvement Energies 15 5566 (2022) [CrossRef] [Google Scholar]
  34. Chen Y., Gao Y., Ng C. W. and Guo H., Bio-improved hydraulic properties of sand treated by soybean urease induced carbonate precipitation and its application Part 1: Water retention ability Transportation Geotechnics 27 100489 (2021) [CrossRef] [Google Scholar]
  35. Yuan H., Ren G., Liu K., Zheng W. and Zhao Z., Experimental study of EICP combined with organic materials for silt improvement in the yellow river flood area Applied Sciences 10 7678 [Google Scholar]
  36. Fan Y., Du H., Wei H. and Zhao T., Experimental Study on Urease Activity and Cementation Characteristics of Soybean Journal of Wuhan University of Technology-Mater. Sci. Ed. 37 636–644 (2022) [Google Scholar]
  37. Al Imran M., Nakashima K., Evelpidou N. and Kawasaki S., IMPROVEMENT OF USING CRUDE EXTRACT UREASE FROM WATERMELON SEEDS FOR BIOCEMENTATION TECHNOLOGY GEOMATE Journal 20 142–147 (2021) [Google Scholar]
  38. Javadi N., Khodadadi H., Hamdan N. and Kavazanjian E., Jr. EICP treatment of soil by using urease enzyme extracted from watermelon seeds Proc. IFCEE 2018 115–124 (2018) [CrossRef] [Google Scholar]
  39. Nam I.-H., Chon C.-M., Jung K.-Y., Choi S.-G., Choi H. and Park S.-S., Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials KSCE Journal of Civil Engineering 19 1620–1625 (2015) [CrossRef] [Google Scholar]
  40. Baiq H. S., Yasuhara H., Kinoshita N., Putra H. and Johan E., EXAMINATION OF CALCITE PRECIPITATION USING PLANTDERIVED UREASE ENZYME FOR SOIL IMPROVEMENT GEOMATE Journal 19 231–237 (2020) [Google Scholar]
  41. Cui M.-J., Lai H.-J., Wu S.-F. and Chu J. Comparison of soil improvement methods using crude soybean enzyme, bacterial enzyme or bacteria-induced carbonate precipitation Géotechnique 0 1–9 [Google Scholar]
  42. Khodadadi T. H., Kavazanjian E., van Paassen L. and DeJong J., Bio-grout materials: A. review Grouting 2017 1–12 (2017) [Google Scholar]
  43. Xiang J., Qiu J., Wang Y. and Gu X., Calcium acetate as calcium source used to biocement for improving performance and reducing ammonia emission Journal of Cleaner Production 348 131286 (2022) [CrossRef] [Google Scholar]
  44. Zhang Y., Guo H. and Cheng X., Influences of calcium sources on microbially induced carbonate precipitation in porous media Materials Research Innovations 18 S2-79-S2-84 (2014) [Google Scholar]
  45. Choi S.-G., Wu S. and Chu J., Biocementation for sand using an eggshell as calcium source Journal of Geotechnical and Geoenvironmental Engineering 142 06016010 (2016) [CrossRef] [Google Scholar]
  46. Kulanthaivel P., Soundara B., Selvakumar S. and Das A., Application of waste eggshell as a source of calcium in bacterial bio-cementation to enhance the engineering characteristics of sand Environmental Science and Pollution Research 1–12 (2022) [Google Scholar]
  47. Feng Q., Song Y., Lu C., Fang H., Huang Y., Chen L. and Song X., Feasible Utilization of Waste Limestone as a Calcium Source for Microbially Induced Carbonate Precipitation (MICP) Fermentation 9 307 (2023) [CrossRef] [Google Scholar]
  48. Sun X., Miao L. and Wu L., Applicability and theoretical calculation of enzymatic calcium carbonate precipitation for sand improvement Geomicrobiology Journal 37 389–399 (2020) [CrossRef] [Google Scholar]
  49. ASTM 2018 D. 2487-11: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) ASTM International, West Conshohocken, PA, USA (2018) [Google Scholar]
  50. ASTM 2010 D. 2166-06: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil ASTM International, West Conshohocken, PA, USA (2010) [Google Scholar]
  51. Simatupang M. and Okamura M., Liquefaction resistance of sand remediated with carbonate precipitation at different degrees of saturation during curing Soils and foundations 57 619–631 (2017) [CrossRef] [Google Scholar]
  52. Qabany A. A. and Soga K., Effect of chemical treatment used in MICP on engineering properties of cemented soils Bio-and Chemo-Mechanical Processes in Geotechnical Engineering: Géotechnique Symposium in Print 2013 107–115 (2014) [CrossRef] [Google Scholar]
  53. Amarakoon G. and Kawasaki S., Factors affecting the improvement of sand properties treated with microbially-induced calcite precipitation Geo-Chicago 2016 72–83 (2016) [CrossRef] [Google Scholar]
  54. Zhao Q., Li L., Li C., Li M., Amini F. and Zhang H., Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease Journal of Materials in Civil Engineering 26 04014094 (2014) [CrossRef] [Google Scholar]
  55. Pakbaz M. S., Kolahi A. and Ghezelbash G. R., Assessment of Microbial Induced Calcite Precipitation (MICP) in Fine Sand Using Native Microbes under Both Aerobic and Anaerobic Conditions KSCE Journal of Civil Engineering 26 1051–1065 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.