Open Access
Issue
E3S Web Conf.
Volume 434, 2023
4th International Conference on Energetics, Civil and Agricultural Engineering (ICECAE 2023)
Article Number 03037
Number of page(s) 8
Section Agricultural Engineering
DOI https://doi.org/10.1051/e3sconf/202343403037
Published online 12 October 2023
  1. A.N. Panche, A.D. Diwan, S.R. Chandra, Flavonoids: an overview, Journal of Nutritional Science 5, e47 (2016) [CrossRef] [PubMed] [Google Scholar]
  2. W. Liu, Y. Feng, S. Yu, Z. Fan, X. Li, J. Li, H. Yin, The Flavonoid Biosynthesis Network in Plants, International Journal of Molecular Sciences 22(23), 12824 (2021) [CrossRef] [PubMed] [Google Scholar]
  3. A. Kerimi, G. Williamson, Differential Impact of Flavonoids on Redox Modulation, Bioenergetics, and Cell Signaling in Normal and Tumor Cells: A Comprehensive Review, Antioxidants & Redox Signaling 29, 1633–1659 (2018) [CrossRef] [PubMed] [Google Scholar]
  4. Sh. Kumar, A.K. Pandey, Chemistry and Biological Activities of Flavonoids: An Overview, The Scientific World Journal 2013, 162750 (2013) [Google Scholar]
  5. J. Kruk, B.H. Aboul-Enein, E. Duchnik, et al., Antioxidative properties of phenolic compounds and their effect on oxidative stress induced by severe physical exercise, J Physiol Sci 72, 19 (2022) [CrossRef] [PubMed] [Google Scholar]
  6. I. Górniak, R. Bartoszewski, J. Króliczewski, Comprehensive review of antimicrobial activities of plant flavonoids, Phytochem Rev 18, 241–272 (2019) [CrossRef] [Google Scholar]
  7. A. Golonko, A.J. Olichwier, R. Swislocka, L. Szczerbinski, W. Lewandowski, Why Do Dietary Flavonoids Have a Promising Effect as Enhancers of Anthracyclines? Hydroxyl Substituents, Bioavailability and Biological Activity, Int. J. Mol. Sci. 24, 391 (2023) [Google Scholar]
  8. A. Panche, A. Diwan, S. Chandra, Flavonoids: An overview, Journal of Nutritional Science 5, E47 (2016) [CrossRef] [PubMed] [Google Scholar]
  9. S. Kumar, A.K. Pandey, Chemistry and biological activities of flavonoids: an overview, TheScientificWorldJournal 2013, 162750 (2013) [PubMed] [Google Scholar]
  10. J.M. Al-Khayri, G.R. Sahana, P. Nagella, B.V. Joseph, F.M. Alessa, M.Q. Al-Mssallem, Flavonoids as Potential Anti-Inflammatory Molecules: A Review, Molecules 27(9), 2901 (2022) [CrossRef] [PubMed] [Google Scholar]
  11. R.K. AL-Ishaq, M. Abotaleb, P. Kubatka, K. Kajo, D. Büsselberg, Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels, Biomolecules 9, 430 (2019) [CrossRef] [PubMed] [Google Scholar]
  12. M. Mladenov, L. Lubomirov, O. Grisk, D. Avtanski, V. Mitrokhin, I. Sazdova, M. Keremidarska-Markova, Y. Danailova, G. Nikolaev, R. Konakchieva, Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging, Antioxidants 12, 1126 (2023) [CrossRef] [PubMed] [Google Scholar]
  13. S.L. Rodríguez De Luna, R.E. Ramírez-Garza, S.O. Serna Saldívar, Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties, TheScientificWorldJournal 2020, 6792069 (2020) [PubMed] [Google Scholar]
  14. J.O. Chaves, M.C. de Souza, L.C. da Silva, D. Lachos-Perez, P.C. Torres-Mayanga, A.P.D.F. Machado, T. Forster-Carneiro, M. Vázquez-Espinosa, A.V. González-de-Peredo, G.F. Barbero, M.A. Rostagno, Extraction of Flavonoids From Natural Sources Using Modern Techniques, Frontiers in chemistry 8, 507887 (2020) [CrossRef] [PubMed] [Google Scholar]
  15. I. Frosi, I. Montagna, R. Colombo, C. Milanese, A. Papetti, Recovery of Chlorogenic Acids from Agri-Food Wastes: Updates on Green Extraction Techniques, Molecules 26, 4515 (2021) [CrossRef] [PubMed] [Google Scholar]
  16. A.R. Abubakar, M. Haque, Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes, Journal of Pharmacy & Bioallied Sciences 12(1), 1–10 (2020) [CrossRef] [PubMed] [Google Scholar]
  17. Pulok K. Mukherjee, Chapter 6 - Extraction and Other Downstream Procedures for Evaluation of Herbal Drugs, Quality Control and Evaluation of Herbal Drugs 195–236 (2019) [CrossRef] [Google Scholar]
  18. D. Naviglio, P. Scarano, M. Ciaravolo, M. Gallo, Rapid Solid-Liquid Dynamic Extraction (RSLDE): A Powerful and Greener Alternative to the Latest Solid-Liquid Extraction Techniques, Foods 8, 245 (2019) [CrossRef] [PubMed] [Google Scholar]
  19. K. Moučková, I. Pacheco-Fernández, J.H. Ayala, P. Bajerová, V. Pino, Evaluation of Structurally Different Ionic Liquid-Based Surfactants in a Green Microwave-Assisted Extraction for the Flavonoids Profile Determination of Mangifera sp. and Passiflora sp. Leaves from Canary Islands, Molecules 25(20), 4734 (2020) [CrossRef] [PubMed] [Google Scholar]
  20. A.F.M. Cláudio et al., Enhanced extraction of caffeine from guaraná seeds using aqueous solutions of ionic liquids, Green Chem. 15, 2002–2010 (2013) [Google Scholar]
  21. M.H. Zainal-Abidin, M. Hayyan, A. Hayyan, N.S. Jayakumar, New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review, Analytica Chimica Acta 979, 1–23 (2017) [CrossRef] [PubMed] [Google Scholar]
  22. Weihua Xiao, Lujia Han, Bo Shi, Microwave-assisted extraction of flavonoids from Radix Astragali, Separation and Purification Technology 62, 614–618 (2008) [CrossRef] [Google Scholar]
  23. C.-W. Chang, C.-C. Yen, M.-T. Wu, M.-C. Hsu, Y.-T. Wu, Microwave-Assisted Extraction of Cannabinoids in Hemp Nut Using Response Surface Methodology: Optimization and Comparative Study, Molecules 22, 1894 (2017) [CrossRef] [PubMed] [Google Scholar]
  24. B. Ondruschka, J. Asghari, Microwave-Assisted Extraction - A State-of-the-Art Overview of Varieties, CHIMIA 60(6), 321 (2006) [CrossRef] [Google Scholar]
  25. Y. Li, A.S. Fabiano-Tixier, M.A. Vian, F. Chemat, Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry, Trends in Analytical Chemistry 47, 1–11 (2013) [CrossRef] [Google Scholar]
  26. M. Sisa, S.L. Bonnet, D. Ferreira, J.H. Van der Westhuizen, Photochemistry of flavonoids, Molecules 15(8), 5196–5245 (2010) [CrossRef] [PubMed] [Google Scholar]
  27. G. Baranović, S. Šegota, Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 192, 473–486 (2018) [CrossRef] [Google Scholar]
  28. W. Feng, Z. Hao, M. Li, Isolation and Structure Identification of Flavonoids, InTech., London (2017) [Google Scholar]
  29. L.A. De Souza, H.C. Da Silva, W.B. De Almeida, Structural Determination of Antioxidant and Anticancer Flavonoid Rutin in Solution through DFT Calculations of 1H NMR Chemical Shifts, ChemistryOpen 7(11), 902–913 (2018) [CrossRef] [PubMed] [Google Scholar]
  30. L. Zou, H. Li, X. Ding, Z. Liu, D. He, J.A.H. Kowah, L. Wang, M. Yuan, X. Liu, A Review of The Application of Spectroscopy to Flavonoids from Medicine and Food Homology Materials, Molecules 27(22), 7766 (2022) [CrossRef] [PubMed] [Google Scholar]
  31. B. Ramesh Kumar, Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs), Journal of Pharmaceutical Analysis 7, 349–364 (2017). [CrossRef] [PubMed] [Google Scholar]
  32. Erdman John W.Jr et al., Flavonoids and Heart Health: Proceedings of the ILSI North America Flavonoids, The Journal of Nutrition 137, 718S–737S (2007) [CrossRef] [PubMed] [Google Scholar]
  33. M.H. Nguyen, D.L. Ha, B.M. Do, N.T.N. Chau, T.H. Tran, N.T.H. Le, M.T. Le, RP-HPLC-Based Flavonoid Profiling Accompanied with Multivariate Analysis: An Efficient Approach for Quality Assessment of Houttuynia cordata Thunb Leaves and Their Commercial Products, Molecules 28(17), 6378 (2023) [CrossRef] [PubMed] [Google Scholar]
  34. A. Altemimi, D.G. Watson, M. Kinsel, D.A. Lightfoot, Simultaneous extraction, optimization, and analysis of flavonoids and polyphenols from peach and pumpkin extracts using a TLC-densitometric method, Chemistry Central Journal 9, 39 (2015) [CrossRef] [PubMed] [Google Scholar]
  35. Elham. M. AL-Rufaie, Najdat. R. Al-khafaji, Electrochemical Study of the Complexation of Quercetin with Lead (׀׀) ion in acidic media, Journal of the College of Basic Education 21(87), 69–81 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.