Open Access
Issue
E3S Web Conf.
Volume 437, 2023
The 5th International Conference on Green Environmental Engineering and Technology (IConGEET2023)
Article Number 03003
Number of page(s) 14
Section Environmental Sustainability and Development
DOI https://doi.org/10.1051/e3sconf/202343703003
Published online 16 October 2023
  1. O.A. Ige, Sources of recycled aggregates for concrete production, Multi-Functional Concr. with Recycl. Aggregates. (2023) 3–16. [Google Scholar]
  2. Y. Li, M. Li, P. Sang, A bibliometric review of studies on construction and demolition waste management by using CiteSpace, Energy Build. 258 (2022) 111822. [CrossRef] [Google Scholar]
  3. P. Tamayo, J. Pacheco, C. Thomas, J. de Brito, J. Rico, Mechanical and durability properties of concrete with coarse recycled aggregate produced with electric arc furnace slag concrete, Appl. Sci. 10 (2020). [Google Scholar]
  4. O.E. Babalola, P.O. Awoyera, M.T. Tran, D.H. Le, O.B. Olalusi, A. Viloria, D. Ovallos-Gazabon, Mechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion, J. Mater. Res. Technol. 9 (2020) 6521–6532. [CrossRef] [Google Scholar]
  5. D.H. Reddy, A. Ramaswamy, Influence of Mineral Admixtures and Aggregates on Properties of Different Concretes under high Temperature Conditions I : Experimental Study, J. Build. Eng. (2017). [Google Scholar]
  6. Y.S. Simões, F.P.D. Fernandes, A.L. Castro, J. Munaiar Neto, Experimental and numerical analysis of the thermal and mechanical behaviour of steel and recycled aggregate concrete composite elements exposed to fire, Fire Mater. 47 (2023) 139–155. [CrossRef] [Google Scholar]
  7. EN 1992-1-2, Eurocode 2: Design of concrete structures Part 1-2: General rules Structural fire design, 2004. [Google Scholar]
  8. O.E. Babalola, P.O. Awoyera, D.-H. Le, L.M. Bendezú Romero, A review of residual strength properties of normal and high strength concrete exposed to elevated temperatures: Impact of materials modification on behaviour of concrete composite, Constr. Build. Mater. 296 (2021) 123448. https://doi.org/10.1016/j.conbuildmat.2021.123448. [CrossRef] [Google Scholar]
  9. D. Paul Thanaraj, T. Kiran, B. Kanagaraj, A. Nammalvar, A.D. Andrushia, B.G.A. Gurupatham, K. Roy, Influence of Heating–Cooling Regime on the Engineering Properties of Structural Concrete Subjected to Elevated Temperature, Build. 2023, Vol. 13, Page 295. 13 (2023) 295. [CrossRef] [Google Scholar]
  10. V. Kodur, Properties of concrete at elevated temperatures, ISRN Civ. Eng. 2014 (2014). [Google Scholar]
  11. P. Kumar Tiwari, P. Sharma, N. Sharma, M. Verma, Rohitash, An experimental investigation on metakaoline GGBS based concrete with recycled coarse aggregate, Mater. Today Proc. 43 (2021) 1025–1030. [CrossRef] [Google Scholar]
  12. R. Shamass, O. Rispoli, V. Limbachiya, R. Kovacs, Mechanical and GWP assessment of concrete using Blast Furnace Slag, Silica Fume and recycled aggregate, Case Stud. Constr. Mater. 18 (2023) e02164. [Google Scholar]
  13. ACI 211.1, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91), ACI Comm. (2002) 120–121. [Google Scholar]
  14. ASCE manual 78, Structural Fire Protection American Society of Civil Engineers, ASCE Manuals and Reports on Engineering Practise No. 78, American Society of Civil Engineers, 1992. [Google Scholar]
  15. ASTM C39/C39M-20, Standard test method for compressive strength of cylindrical concrete specimens, ASTM Int. West Conshohocken, PA. (2020). [Google Scholar]
  16. ASTM C496-96, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete, Am. Stand. Test. Mater. (2004) 1–5. [Google Scholar]
  17. ASTM C469-02, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, ASTM Stand. B. 04 (2002) 1–5. [Google Scholar]
  18. B.P. Lenka, R.K. Majhi, S. Singh, A.N. Nayak, Eco-friendly and cost-effective concrete utilizing high-volume blast furnace slag and demolition waste with lime, Eur. J. Environ. Civ. Eng. 26 (2022) 5351–5373. [CrossRef] [Google Scholar]
  19. J. Ahmad, R. Martínez-García, M. Szelag, J. De-Prado-Gil, R. Marzouki, M. Alqurashi, E.E. Hussein, Effects of Steel Fibers (SF) and Ground Granulated Blast Furnace Slag (GGBS) on Recycled Aggregate Concrete, Materials (Basel). 14 (2021) 7497. [CrossRef] [PubMed] [Google Scholar]
  20. M.M. Tüfekçi, Ö. Çakır, An Investigation on Mechanical and Physical Properties of Recycled Coarse Aggregate (RCA) Concrete with GGBFS, Int. J. Civ. Eng. 15 (2017) 549–563. [CrossRef] [Google Scholar]
  21. K.P. Verian, W. Ashraf, Y. Cao, Properties of recycled concrete aggregate and their influence in new concrete production, Resour. Conserv. Recycl. 133 (2018) 30–49. [CrossRef] [Google Scholar]
  22. B. Fernandes, H. Carré, J.C. Mindeguia, C. Perlot, C. La Borderie, Effect of elevated temperatures on concrete made with recycled concrete aggregates An overview, J. Build. Eng. 44 (2021) 1–39. 5. [Google Scholar]
  23. S. Teng, T.Y.D. Lim, B.S. Divsholi, Durability and mechanical properties of high strength concrete incorporating ultra fine ground granulated blast-furnace slag, Constr. Build. Mater. 40 (2013) 875–881. [CrossRef] [Google Scholar]
  24. E.D. Shumuye, J. Zhao, Z. Wang, Effect of fire exposure on physico-mechanical and microstructural properties of concrete containing high volume slag cement, Constr. Build. Mater. 213 (2019) 447–458. [CrossRef] [Google Scholar]
  25. C.J. Zega, A. Antonio, D. Maio, Recycled concrete made with different natural coarse aggregates exposed to high temperature, Constr. Build. Mater. 23 (2009) 2047–2052. [CrossRef] [Google Scholar]
  26. Khalifa, Al-Jabri, W.M. Bilal, A.H. Al-Saidy, Effect of aggregate and water to cement ratio on concrete properties at elevated temperature, Fire Mater. (2015). [Google Scholar]
  27. K. Behfarnia, M. Shahbaz, The effect of elevated temperature on the residual tensile strength and physical properties of the alkali-activated slag concrete, J. Build. Eng. 20 (2018) 442–454. [CrossRef] [Google Scholar]
  28. W. Yonggui, L. Shuaipeng, P. Hughes, F. Yuhui, Mechanical properties and microstructure of basalt fibre and nano-silica reinforced recycled concrete after exposure to elevated temperatures, Constr. Build. Mater. 247 (2020) 118561. [CrossRef] [Google Scholar]
  29. S.C. Kou, C.S. Poon, F. Agrela, Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures, Cem. Concr. Compos. 33 (2011) 788–795. https://doi.org/10.1016/j.cemconcomp.2011.05.009. [CrossRef] [Google Scholar]
  30. G. Fang, J. Chen, B. Dong, B. Liu, Microstructure and micromechanical properties of interfacial transition zone in green recycled aggregate concrete, J. Build. Eng. 66 (2023) 105860. [CrossRef] [Google Scholar]
  31. D.P. Thanaraj, N. Anand, G. Prince Arulraj, E. Zalok, Post-fire damage assessment and capacity based modeling of concrete exposed to elevated temperature, 2020. [Google Scholar]
  32. N. Kien, T. Satomi, H. Takahashi, Effect of mineral admixtures on properties of recycled aggregate concrete at high temperature, Constr. Build. Mater. 184 (2018) 361–373. [CrossRef] [Google Scholar]
  33. D. Xuan, B. Zhan, C.S. Poon, Thermal and residual mechanical profile of recycled aggregate concrete prepared with carbonated concrete aggregates after exposure to [Google Scholar]
  34. H. Zhao, F. Liu, H. Yang, Residual compressive response of concrete produced with both coarse and fine recycled concrete aggregates after thermal exposure, Constr. Build. Mater. 244 (2020).. [Google Scholar]
  35. M.F. Alnahhal, U.J. Alengaram, M.Z. Jumaat, M.A. Alqedra, K.H. Mo, M. Sumesh, Evaluation of industrial by-products as sustainable pozzolanic materials in recycled aggregate concrete, Sustainability. 9 (2017) 767. [CrossRef] [Google Scholar]
  36. L.A. Qureshi, B. Ali, A. Ali, Combined effects of supplementary cementitious materials (silica fume, GGBS, fly ash and rice husk ash) and steel fiber on the hardened properties of recycled aggregate concrete, Constr. Build. Mater. 263 (2020) 120636. [CrossRef] [Google Scholar]
  37. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons, 2016. [Google Scholar]
  38. D. Sinkhonde, R.O. Onchiri, W.O. Oyawa, J.N. Mwero, Response surface methodology-based optimisation of cost and compressive strength of rubberised concrete incorporating burnt clay brick powder, Heliyon. 7 (2021) e08565. [CrossRef] [PubMed] [Google Scholar]
  39. D.C. Montgomery, Design and analysis of experiments, John wiley & sons, 2017. [Google Scholar]
  40. N. Bala, M. Napiah, I. Kamaruddin, Nanosilica composite asphalt mixtures performance-based design and optimisation using response surface methodology [Google Scholar]
  41. M. Nematzadeh, A.A. Shahmansouri, M. Fakoor, Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP, Constr. Build. Mater. 252 (2020) 119057.. [CrossRef] [Google Scholar]
  42. A. Ahmad, K.A. Ostrowski, M. Maślak, F. Farooq, I. Mehmood, A. Nafees, Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature, Materials (Basel). 14 (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.