Open Access
Issue
E3S Web Conf.
Volume 441, 2023
2023 International Conference on Clean Energy and Low Carbon Technologies (CELCT 2023)
Article Number 01006
Number of page(s) 6
Section Clean Energy Utilization and Energy Storage Technology
DOI https://doi.org/10.1051/e3sconf/202344101006
Published online 07 November 2023
  1. Bandara, T., Franks, A., Xu, J., Bolan, N., Wang, H., & Tang, C. (2019). Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils. Critical Reviews in Environmental Science and Technology, 1–76. [Google Scholar]
  2. Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal— a review. Biology and fertility of soils, 35 (4), 219–230. [CrossRef] [Google Scholar]
  3. Lehmann, J., Gaunt, J., & Rondon, M. (2006). Biochar sequestration in terrestrial ecosystems-a review. Mitigation and adaptation strategies for global change, 11 (2), 395–419. [Google Scholar]
  4. Spokas, K. A., & Reicosky, D. C. (2009). Impacts of sixteen different biochars on soil greenhouse gas production. Annals of Environmental Science, 3, 179193. [Google Scholar]
  5. Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., Karlen, D. L., & Brown, R. C. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158 (3-4), 443–449. [CrossRef] [Google Scholar]
  6. Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., & Graber, E. R. (2010). An investigation into the reactions of biochar in soil. Soil Research, 48 (7), 501–515. [CrossRef] [Google Scholar]
  7. Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental pollution, 159 (12), 3269–3282. [CrossRef] [Google Scholar]
  8. El-Nakhlawy, F. S., El-Shafie, A., & El-Shorbagy, A. (2016). Using Biochar to Improve Soil Physical and Mechanical Properties for Road Subgrade. Journal of Geotechnical and Geological Engineering, 34(1), 1929. [Google Scholar]
  9. Xu, W., Zhao, J., Liu, X., Liu, W., & Xiong, C. (2016). Effects of biochar amendment on soil physical properties and soil erosion in the loess plateau, China. CATENA, 147, 98–106. [Google Scholar]
  10. Mohan, D., Pittman, C. U. Jr., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & fuels, 20 (3), 848–889. [CrossRef] [Google Scholar]
  11. Chen, D., Chen, Y., Zhang, Q., Yin, D., & Liu, J. (2017). Synthesis of iron-modified biochar and its application in heavy metals removal. Journal of hazardous materials, 330, 94–102. [Google Scholar]
  12. Beiyuan, J., Rui, L., Liwei, W., Zhaoliang, Y., Xingtao, Z., Xuewei, P., Xiaoping, X., & Mingxiao, L. (2017). Experimental study on the mechanical properties of biochar reinforced soil. Journal of Earthquake Engineering and Engineering Vibration, 16 (2), 409–418. [Google Scholar]
  13. Karaosmanoğlu, F., Işıgıgür-Ergüdenler, A., & Sever, A. (2000). Biochar from the straw-stalk of rapeseed plant. Energy & Fuels, 14 (2), 336–339. [CrossRef] [Google Scholar]
  14. Tuyishimire, E., Cui, J.F., Cheng, J.H. Interactive Effects of Honeysuckle Planting and Biochar Amendment on Soil Structure and Hydraulic Properties of Hillslope Farmland. Agriculture-Basel. 2022, 12(3). DOI: 10.3390/agriculture12030414. [Google Scholar]
  15. Wani, I., Ramola, S., Garg, A., Kushvaha, V. Critical review of biochar applications in geoengineering infrastructure: moving beyond agricultural and environmental perspectives. Biomass Conversion and Biorefinery, online, 2021, DOI: 10.1007/s13399-021-01346-8. [Google Scholar]
  16. Sun W. and Li M. Study on air permeability characteristics of overburden soil modified by biochar. Chinese Journal of Rock Mechanics and Engineering. 2022, 41(S2). 3543–3550. [Google Scholar]
  17. Matovic, D. (2011). Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy, 36(4). [CrossRef] [Google Scholar]
  18. Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature communications, 1(1), 56. [CrossRef] [PubMed] [Google Scholar]
  19. Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., & Minx, J. C. (2018). Negative emissions - Part 2: Costs, potentials and side effects. Environmental Research Letters, 13(6), 063002. [CrossRef] [Google Scholar]
  20. Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: science, technology and implementation. Routledge. [CrossRef] [Google Scholar]
  21. Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., Haszeldine, S., & Sohi, S. (2012). Sustainable gasification-biochar systems? A casestudy of rice-husk gasification in Cambodia, part I: Context, chemical properties, environmental and health and safety issues. Energy Policy, 49, 422–433. [CrossRef] [Google Scholar]
  22. Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in agronomy, 105, 47–82. [CrossRef] [Google Scholar]
  23. Cao, X., & Harris, W. (2010). Properties of dairymanure-derived biochar pertinent to its potential use in remediation. Bioresource technology, 101 (14), 5222–5228. [CrossRef] [PubMed] [Google Scholar]
  24. Shen, Q., Ren, L., Zhong, H., & Yan, L. (2017). Effect of pyrolysis temperature on the physicochemical properties and heavy metal adsorption of biochar derived from municipal sewage sludge. Bioresource technology, 244, 355–362. [Google Scholar]
  25. Beiyuan, J., Rui, L., Liwei, W., Zhaoliang, Y., Xingtao, Z., Xuewei, P., & Mingxiao, L. (2020). Effects of pyrolysis temperature on the properties and cadmium adsorption capacity of biochar derived from tobacco stalk. Journal of environmental management, 271, 110996. [Google Scholar]
  26. Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., & Pan, G. (2013). Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant and soil, 373 (1-2), 583–594. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.