Open Access
Issue |
E3S Web Conf.
Volume 441, 2023
2023 International Conference on Clean Energy and Low Carbon Technologies (CELCT 2023)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 5 | |
Section | Pollution Control and Low-Carbon Energy Saving Development | |
DOI | https://doi.org/10.1051/e3sconf/202344102004 | |
Published online | 07 November 2023 |
- Bouman, Evert A., Martha M. Øberg, and Edgar G. Hertwich. 2016. Environmental impacts of balancing offshore wind power with compressed air energy storage (CAES), Energy, 95: 91–98. [CrossRef] [Google Scholar]
- Bazdar, E., Sameti, M., Nasiri, F., & Haghighat, F. 2022. Compressed air energy storage in integrated energy systems: A review. Renewable and Sustainable Energy Reviews, 167. [Google Scholar]
- Gowrisankaran, G., Reynolds, S. S., & Samano, M. (2016). Intermittency and the value of renewable energy. Journal of Political Economy, 124 (4), 1187–1234. [CrossRef] [Google Scholar]
- Yudhistira, Ryutaka, Dilip Khatiwada, and Fernando Sanchez. 2022. A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage, Journal of Cleaner Production, 358. [Google Scholar]
- Mitali, J., Dhinakaran, S., & Mohamad, A. A. 2022. Energy storage systems: a review. Energy Storage and Saving, 1(3), 166–216. [CrossRef] [Google Scholar]
- Tan, Kang Miao, Thanikanti Sudhakar Babu, Vigna K. Ramachandaramurthy, Padmanathan Kasinathan, Sunil G. Solanki, and Shangari K. Raveendran. 2021. Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration, Journal of Energy Storage, 39. [Google Scholar]
- Olabi, A. G., C. Onumaegbu, Tabbi Wilberforce, Mohamad Ramadan, Mohammad Ali Abdelkareem, and Abdul Hai Al - Alami. 2021. Critical review of energy storage systems, Energy, 214. [Google Scholar]
- Olympios, A. V., McTigue, J. D., Farres-Antunez, P., Tafone, A., Romagnoli, A., Li, Y., & Markides, C. N. (2021). Progress and prospects of thermo-mechanical energy storage—a critical review. Progress in Energy, 3(2). [Google Scholar]
- Mahmoud, M., Ramadan, M., Olabi, A.-G., Pullen, K., & Naher, S. 2020. A review of mechanical energy storage systems combined with wind and solar applications. Energy Conversion and Management, 210. [Google Scholar]
- Sandia National Laboratories and U.S. Department of energy (DOE) global energy storage database. https://www.energystorageexchange.org/projects. [Google Scholar]
- Rehman, Shafiqur, Luai M. Al-Hadhrami, and Md Mahbub Alam. 2015. Pumped hydro energy storage system: A technological review, Renewable and Sustainable Energy Reviews, 44: 586–98. [CrossRef] [Google Scholar]
- Varun, Bhat, I. K., & Prakash, R. (2009). LCA of renewable energy for electricity generation systems—A review. Renewable and Sustainable Energy Reviews, 13 (5), 1067–1073. [CrossRef] [Google Scholar]
- AlShafi, M., & Bicer, Y. 2021. Life cycle assessment of compressed air, vanadium redox flow battery, and molten salt systems for renewable energy storage. Energy Reports, 7, 7090–7105. [CrossRef] [Google Scholar]
- Vandepaer, L., Cloutier, J., & Amor, B. 2017. Environmental impacts of Lithium Metal Polymer and Lithium-Ion stationary batteries. Renewable and Sustainable Energy Reviews, 78, 46–60. [CrossRef] [Google Scholar]
- Stougie, L., Del Santo, G., Innocenti, G., Goosen, E., Vermaas, D., van der Kooi, H., & Lombardi, L. 2019. Multi-Dimensional life cycle assessment of decentralised energy storage systems. Energy, 182, 535–543. [CrossRef] [Google Scholar]
- de Almeida, A. T., Moura, P. S., Marques, A. S., & de Almeida, J. L. 2005. Multi-Impact evaluation of new medium and large hydropower plants in Portugal centre region. Renewable and Sustainable Energy Reviews, 9 (2), 149–167. [CrossRef] [Google Scholar]
- Denholm, Paul, and Gerald L. Kulcinski. 2004. Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems, Energy Conversion and Management, 45: 2153–72. [CrossRef] [Google Scholar]
- Huijbregts, Mark A. J., Zoran J. N. Steinmann, Pieter M. F. Elshout, Gea Stam, Francesca Verones, Marisa Vieira, Michiel Zijp, Anne Hollander, and Rosalie van Zelm. 2016. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level, The International Journal of Life Cycle Assessment, 22: 138–47. [Google Scholar]
- Ou, Xunmin, Yan Xiaoyu, and Xiliang Zhang. 2011. Life-Cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China, Applied Energy, 88: 289–97. [CrossRef] [Google Scholar]
- Oliveira, L., Messagie, M., Mertens, J., Laget, H., Coosemans, T., & Van Mierlo, J. 2015. Environmental performance of electricity storage systems for grid applications, a life cycle approach. Energy Conversion and Management, 101, 326–335. [CrossRef] [Google Scholar]
- CEC, 2021. Annual report on development of China power industry 2021. https://www.cec.org.cn/menu/index.html?688. [Google Scholar]
- Ueda, T., E. S. Roberts, A. Norton, D. Styles, A. P. Williams, H. M. Ramos, and J. Gallagher. 2019. A life cycle assessment of the construction phase of eleven micro-hydropower installations in the UK, Journal of Cleaner Production, 218: 1–9. [CrossRef] [Google Scholar]
- Flury K., Frischknecht R. Life cycle inventories of hydroelectric power generation. Uster, Switzerland: ESU-services Ltd; 2012. [Google Scholar]
- Immendoerfer, Andrea, Ingela Tietze, Heidi Hottenroth, and Tobias Viere. 2017. Life-Cycle impacts of pumped hydropower storage and battery storage, International Journal of Energy and Environmental Engineering, 8: 231–45. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.