Open Access
Issue |
E3S Web Conf.
Volume 441, 2023
2023 International Conference on Clean Energy and Low Carbon Technologies (CELCT 2023)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 4 | |
Section | Intelligent Ecological Management and Green Service | |
DOI | https://doi.org/10.1051/e3sconf/202344103002 | |
Published online | 07 November 2023 |
- Liu, J.X., Shi, H.L., Shi, Y.H., et al. (2021) Entanglement and work extraction in the centralspin quantum battery. J. Physical Review B., 104(24): 245418. [CrossRef] [Google Scholar]
- Seah, S., Perarnau-Llobet, M., Haack, G., et al. (2021) Quantum speed-up in collisional battery charging. J. Physical Review Letters., 127(10): 100601. [CrossRef] [PubMed] [Google Scholar]
- Andolina, G.M., Keck, M., Mari, A., et al. (2019) Extractable work, the role of correlations, and asymptotic freedom in quantum batteries. J. Physical Review Letters., 122(4): 047702. [CrossRef] [PubMed] [Google Scholar]
- Dou, F.Q., Lu, Y.Q., Wang, Y.J., et al. (2022) Extended dicke quantum battery with interatomic interactions and driving field. J. Physical Review B., 105(11): 115405. [CrossRef] [Google Scholar]
- Camati, P.A., Santos, J.F.G., Serra, R.M. (2019) Coherence effects in the performance of the quantum otto heat engine. J. Physical Review A., 99(6): 062103. [CrossRef] [Google Scholar]
- Hammam, K., Hassouni, Y., Fazio, R., et al. (2021) Optimizing autonomous thermal machines powered by energetic coherence. J. New Journal of Physics., 23(4): 043024. [CrossRef] [Google Scholar]
- Latune, C.L., Sinayskiy, I., Petruccione, F. (2021) Roles of quantum coherences in thermal machines. J. The European Physical Journal Special Topics., 230(4): 841–850. [CrossRef] [Google Scholar]
- Ji, W., Chai, Z., Wang, M., et al. (2022) Spin quantum heat engine quantified by quantum steering. J. Physical Review Letters., 128(9): 090602. [CrossRef] [PubMed] [Google Scholar]
- Yu, W.L., Li, T., Li, H., et al. (2021) Heat modulation on target thermal bath via coherent auxiliary bath. J. Entropy., 23(9): 1183. [CrossRef] [Google Scholar]
- Micadei, K., Peterson, J.P.S., Souza, A.M., et al. (2019) Reversing the direction of heat flow using quantum correlations. J. Nature Communications., 10(1): 1–6. [CrossRef] [Google Scholar]
- Bresque, L., Camati, P.A., Rogers, S., et al. (2021) Two-Qubit engine fueled by entanglement and local measurements. J. Physical Review Letters., 126(12): 120605. [CrossRef] [PubMed] [Google Scholar]
- Shahidani, S. (2022) Thermodynamic forces and flows between a thermal bath and a squeezed thermal bath: Application to optomechanical systems. J. Physical Review A., 105(6): 063516. [CrossRef] [Google Scholar]
- Latune, C.L., Sinayskiy, I., Petruccione, F. (2019) Heat flow reversals without reversing the arrow of time: The role of internal quantum coherences and correlations. J. Physical Review Research., 1(3): 033097. [CrossRef] [Google Scholar]
- Man, Z.X., Xia, Y.J., An, N.B. (2020) Heat fluxes in a two-qubit cascaded system due to coherences of a non-thermal bath. J. Journal of Physics B: Atomic, Molecular and Optical Physics., 53(20): 205505. [CrossRef] [Google Scholar]
- Baumgratz, T., Cramer, M., Plenio, M.B. (2014) Quantifying coherence. J. Physical Review Letters., 113(14): 140401. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.