Open Access
Issue
E3S Web Conf.
Volume 441, 2023
2023 International Conference on Clean Energy and Low Carbon Technologies (CELCT 2023)
Article Number 03005
Number of page(s) 5
Section Intelligent Ecological Management and Green Service
DOI https://doi.org/10.1051/e3sconf/202344103005
Published online 07 November 2023
  1. N. Ansari and A. Seifi, “A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios,” Energy Policy, vol. 58, pp. 75–89, Jul. 2013, DOI: 10.1016/j.enpol.2013.02.042. [CrossRef] [Google Scholar]
  2. V. De Marchi, “Environmental innovation and R&D cooperation: Empirical evidence from Spanish manufacturing firms,” Res. Policy, vol. 41, no. 3, pp. 614–623, Apr. 2012, DOI: 10.1016/j.respol.2011.10.002. [CrossRef] [Google Scholar]
  3. C. Antonelli and F. Quatraro, “The effects of biased technological change on total factor productivity: empirical evidence from a sample of OECD countries,” J. Technol. Transf., vol. 35, no. 4, pp. 361–383, Aug. 2010, DOI: 10.1007/s10961-009-9134-2. [CrossRef] [Google Scholar]
  4. W. L. Weber and B. R. Domazlicky, “Total factor productivity growth in manufacturing: a regional approach using linear programming,” Reg. Sci. Urban Econ., vol. 29, no. 1, pp. 105–122, Jan. 1999, DOI: 10.1016/S0166-0462(98)00013-1. [CrossRef] [Google Scholar]
  5. P.-C. Chen and M.-M. Yu, “Total factor productivity growth and directions of technical change bias: evidence from 99 OECD and non-OECD countries,” Ann. Oper. Res., vol. 214, no. 1, pp. 143–165, Mar. 2014, DOI: 10.1007/s10479-012-1087-4. [CrossRef] [Google Scholar]
  6. J. Peng, J. Xiao, L. Wen, and L. Zhang, “Energy industry investment influences total factor productivity of energy exploitation: A biased technical change analysis,” J. Clean. Prod., vol. 237, p. 117847, Nov. 2019, DOI: 10.1016/j.jclepro.2019.117847. [CrossRef] [Google Scholar]
  7. Z. Shen and X. Zhao, “Evaluation of Resource Utilization Efficiency in the Machining Process Based on the SBM-DEA Model with Non-Expected Output,” Processes, vol. 11, no. 3, Art. no. 3, Mar. 2023, DOI: 10.3390/pr11030916. [Google Scholar]
  8. F. Fan, H. Lian, X. Liu, and X. Wang, “Can environmental regulation promote urban green innovation Efficiency? An empirical study based on Chinese cities,” J. Clean. Prod., vol. 287, p. 125060, Mar. 2021, DOI: 10.1016/j.jclepro.2020.125060. [CrossRef] [Google Scholar]
  9. Y. Wang, W. Chen, Y. Kang, W. Li, and F. Guo, “Spatial correlation of factors affecting CO2 emission at provincial level in China: A geographically weighted regression approach,” J. Clean. Prod., vol. 184, pp. 929–937, May 2018, DOI: 10.1016/j.jclepro.2018.03.002. [CrossRef] [Google Scholar]
  10. J. Song, Q. Feng, X. Wang, H. Fu, W. Jiang, and B. Chen, “Spatial Association and Effect Evaluation of CO 2 Emission in the Chengdu-Chongqing Urban Agglomeration: Quantitative Evidence from Social Network Analysis,” Sustainability, vol. 11, no. 1, pp. 1–19, 2018, DOI: 10.3390/su11010001. [CrossRef] [Google Scholar]
  11. R. Färe, E. Grifell-Tatjé, S. Grosskopf, and C.A. Knox Lovell, “Biased Technical Change and the Malmquist Productivity Index,” Scand. J. Econ., vol. 99, no. 1, pp. 119–127, Mar. 1997, DOI: 10.1111/1467-9442.00051. [CrossRef] [Google Scholar]
  12. Y. H. Chung, R. Färe, and S. Grosskopf, “Productivity and Undesirable Outputs: A. Directional Distance Function Approach,” J. Environ. Manage., vol. 51, no. 3, pp. 229–240, Nov. 1997, DOI: 10.1006/jema.1997.0146. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.