Open Access
Issue
E3S Web Conf.
Volume 446, 2023
2nd International Conference on High-Speed Transport Development (HSTD 2023)
Article Number 01006
Number of page(s) 9
Section Acoustics, Noise, Vibrations
DOI https://doi.org/10.1051/e3sconf/202344601006
Published online 10 November 2023
  1. Environmental Protection. Annex 16 to the Convention on International Civil Aviation, Montreal. Canada. ICAO, 1 Aircraft Noise (2011) [Google Scholar]
  2. CS-36 Certification Specifications, Acceptable Means of Compliance and Guidance Material for Aircraft Noise. Amendment 6 (2021) https://www.easa.europa.eu/en/document-library/certification-specifications/cs-36-amendment-6 [Google Scholar]
  3. GOST R 58849–2020 (2020) Civil aircraft. Development procedures. General provisions. [Google Scholar]
  4. M.A. Pogosyan, P.A. Moshkov, Modern problems of aeroacoustics of propeller-driven fixed-wing aircrafts. J. of Dyn. and Vib., 9, 6–15 (2023) doi: 10.18287/2409-4579-2023-9-1-6-15 [Google Scholar]
  5. P.A. Moshkov, V.F. Samokhin, Problems of light propeller-driven airplane design with regard to community noise requirements. MAI Aerospace J., 28, 19–34 (2021) doi: 10.34759/vst-2021-1-19-34 [Google Scholar]
  6. M.A. Pogosyan, A.G. Bratukhin, E.P. Savel’evskikh, D.Y. Strelets, V.A. Zlygarev, CALS technology in the creation of the SSJ100 airplane. Russ. Eng. Res., 37, 694–700 (2017) doi: 10.3103/S1068798X17080159 [CrossRef] [Google Scholar]
  7. P. Moshkov, E. Toropylina, Assessment of the use of electric power plants on the propeller-driven aircraft noise, J. Aerosp. Sys., 6, 101–106 (2023) doi: 10.1007/s42401-022-00167-5 [CrossRef] [Google Scholar]
  8. V.G. Dmitriev, V.F. Samokhin, P.A. Moshkov, Acoustics of Light Propeller-Driven Aircraft. Polyot, 3, 3–12 (2022) [Google Scholar]
  9. L. Bertsch, Noise Prediction within Conceptual Aircraft Design. PhD Thesis (2013) doi: 10.34912/n0is3-d3sign [Google Scholar]
  10. V.G. Dmitriev, V.F. Samokhin, Complex of algorithms and programs for calculation of aircraft noise. TsAGI Sci. J., 45, 367–388 (2014) doi: 10.1615/TsAGISciJ.2014011838 [CrossRef] [Google Scholar]
  11. M.K. Herniczek, D. Feszty, S. Meslioui, J. Park, Applicability of Early Acoustic Theory for Modern Propeller Design. 23rd AIAA/CEAS Aeroacoustics Conf., AIAA 2017–3865 (2017) doi: 10.2514/6.2017-3865 [Google Scholar]
  12. S. Timushev, A. Yakovlev, P. Moshkov, Numerical simulation of the light aircraft propeller noise under static condition. Akustika, 41, 100–106, (2021) doi: 10.36336/akustika202141100 [CrossRef] [Google Scholar]
  13. M.A. Pogosyan, S.F. Timushev, P.A. Moshkov, A.A. Yakovlev, Simulation of isolated propeller noise using acoustic-vortex method. JSFI, 10, 21–30 (2023) doi: 10.14529/jsfi230102 [Google Scholar]
  14. V.G. Bobkov, T.K. Kozubskaya, L.N. Kudryavtseva, V.O. Tsvetkova, Hybrid dynamic mesh redistribution - immersed boundary method for acoustic simulation of flow around a propeller. JSFI, 9, 69–84 (2022) doi: 10.14529/jsfi220407 [Google Scholar]
  15. V.F. Kopiev, V.A. Titarev, I.V. Belyaev, Development of a methodology for propeller noise calculation on high-performance computer. TsAGI Sci. J., 45, 293–327 (2014) doi: 10.1615/TsAGISciJ.2014011857 [CrossRef] [Google Scholar]
  16. H. Jiang et al., Toward high-efficiency low-noise propellers: A numerical and experimental study. Phys. Fluids, 34, 076116 (2022) doi: 10.1063/5.0098891 [CrossRef] [Google Scholar]
  17. P. Moshkov, V. Samokhin, A. Yakovlev, C. Bolun, The problems of selecting the power plant for light propeller-driven aircraft and unmanned aerial vehicle taking into account the requirements for community noise. Akustika, 39, 164–169 (2021) doi: 10.36336/akustika202139162 [Google Scholar]
  18. P.A. Moshkov, V.F. Samokhin, A.A. Yakovlev, Engine-propeller power plant aircraft community noise reduction key methods. AIP Conf. Proc., 1952, 020059 (2018) doi: 10.1063/1.5032021 [CrossRef] [Google Scholar]
  19. A.Z. Dwi, H. Syamsudin, Manufacturing Fiberglass-Epoxy LSU-03 Aircraft Propeller Using Hand Lay-up and Vacuum Assisted Resin Transfer Moulding (VARTM) Methods. IOP Conf. Series: Materials Sci. and Eng., 645, 012018 (2019) doi: 10.1088/1757-899X/645/1/012018 [CrossRef] [Google Scholar]
  20. V.G. Gainutdinov, N.V. Levshonkov, Design of highly efficient propeller blades. Russian Aeronautics, 56, 111–116 (2013) doi: 10.3103/S1068799813020013 [CrossRef] [Google Scholar]
  21. T.Y. Gainutdinova, A.V. Gainutdinova, Algorithm of calculating the light airplane flight performance and rational design airscrew parameters at the preliminary design stage. Russian Aeronautics, 59, 364–370, (2016) doi: 10.3103/S1068799816030119 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.