Open Access
Issue
E3S Web Conf.
Volume 446, 2023
2nd International Conference on High-Speed Transport Development (HSTD 2023)
Article Number 01008
Number of page(s) 6
Section Acoustics, Noise, Vibrations
DOI https://doi.org/10.1051/e3sconf/202344601008
Published online 10 November 2023
  1. A.G. Zakharov, A.N. Anoshkin, A.A. Pan'kov, P.V. Pisarev, Acoustic resonant characteristics of two - and three-layered cellular sound absorbing panels. PNRPU Aerosp. Eng. Bull., 46, 144–158 (2016). doi: 10.15593/2224-9982/2016.46.08 [CrossRef] [Google Scholar]
  2. A.F. Sobolev, V.G. Ushakov, R.D. Filipova, Homogeneous sound-absorbing structures for aircraft engine ducts. Acoust. Phys., 55(6), 749–759 (2009) [Google Scholar]
  3. A.N. Anoshkin, A.G. Zakharov, N.A. Gorodkova, V.A. Chursin, Computational and experimental studies of resonance sound-absorbing multilayer structures. PNRPU Mech. Bull., 1, 5–20 (2015). doi: 10.15593/perm.mech/2015.1.01 [Google Scholar]
  4. P.V. Pisarev, A.N. Anoshkin, A.A. Pan’kov, Acoustic resonance in the cylindrical two-chamber cell with the elastic permeable membrane. ISJ Theor. Appl.Sci., 44(12), 55–61 (2016). doi: 10.15863/TAS.2016.12.44.12 [CrossRef] [Google Scholar]
  5. A.P. Duben, T.K. Kozubskaya, S.I. Korolev, V.P. Maslov, A.K. Mironov, D.A. Mironova, V.M. Shakhparonov, Acoustic flow in the resonator throat: Experiment and computational modelling, Acoust. Phys. 58(1), 80–92 (2012). doi: 10.1134/S106377101201006X [Google Scholar]
  6. Md.A. Mahmud, Md.Z. Hossain, S. Islam, M.M.M. Morshed, A Comparative Study Between Different Helmholtz Resonator Systems. Can. Acoust. 44(4), 12–17 (2016) [Google Scholar]
  7. M.B. Xu, A. Selаmet, H. Kim, Dual Helmholtz resonator. Appl. Acoust. 71, 822–829 (2010). doi: 10.1016/j.apacoust.2010.04.007 [CrossRef] [Google Scholar]
  8. A. Selamet, I. Lee, Helmholtz resonator with extended neck. Acoust. Soc. Am., 113(4), 1975–1985 (2003). doi: 10.1121/1.1558379 [CrossRef] [PubMed] [Google Scholar]
  9. S. Mekid, M. Farooqui, Design of Helmholtz resonators in one and two degrees of freedom for noise attenuation in pipelines, Acoust. Aust. 40(3):194–202 (2012) [Google Scholar]
  10. Md.A. Mahmud, Md.S. Islam, Md.Z. Hossain, Md.M. Morshed Mir, Noise Attenuation by Two One Degree of Freedom Helmholtz Resonators, Glob. Educ. J. Sci. Technol. 3(1), 1–9 (2015) [Google Scholar]
  11. I.V. Khramtsov, O.Yu. Kustov, E.S. Fedotov, A.A. Siner, On numerical simulation of sound damping mechanisms in the cell of a sound-absorbing structure. Acoust. Phys., 64(4), 511–517 (2018). doi: 10.1134/S1063771018040073 [CrossRef] [Google Scholar]
  12. P. V. Pisarev, A.N. Anoshkin, N.A. Merzliakova, Manufacturing sound-absorbing structures by 3d-printing. MATEC Web Conf. 243:00026 (2018). doi: https://doi.org/10.1051/matecconf/201824300026 [CrossRef] [EDP Sciences] [Google Scholar]
  13. P.V. Pisarev, K.A. Akhunzianova, Influence of the shape of the sound-absorbing construction cells on their acoustic efficiency in the linear and nonlinear operation modes. AIP Conf. Proc., 2216(1), 050006 (2019). doi: 10.1063/5.0004084 [Google Scholar]
  14. A.F. Sobolev, A semiempirical theory of a one-layer cellular sound-absorbing lining with a perforated face panel, Acoust. Phys., 53(6), 762–771 (2007) [CrossRef] [Google Scholar]
  15. A.G. Munin, V.M. Kuznetsov, V.E. Leontiev, Aerodynamic noise sources (Moscow, Mashinostroenie, 1981) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.