Open Access
Issue |
E3S Web Conf.
Volume 446, 2023
2nd International Conference on High-Speed Transport Development (HSTD 2023)
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 7 | |
Section | Dynamics, Control, Intellectualization of Systems | |
DOI | https://doi.org/10.1051/e3sconf/202344605001 | |
Published online | 10 November 2023 |
- Y. Qin, Z. Cao, Y. Sun, L. Kou, X. Zhao, Y. Wu, Q. Liu, M. Wang, L. Jia, Research on Active Safety Methodologies for Intelligent Railway Systems. Engineering, (2022) https://doi.org/10.1016Zj.eng.2022.06.025 [Google Scholar]
- The European Rail Research Advisory Council. Rail 2050 vision rail - the backbone of Europe’s mobility. Report. Brussels: The European Rail Research Advisory Council; 2018 Jan 31. [Google Scholar]
- H. Li, D. Parikh, Q. He, B. Qian, Z. Li, D. Fang, A. Hampapur, Improving rail network velocity: A machine learning approach to predictive maintenance. Transp. Res. Part C Emerg. Technol., 45, 17–26 (2014) https://doi.org/10.1016/j.trc.2014.04.013 [CrossRef] [Google Scholar]
- H. Alawad, S. Kaewunruen, M. An, Learning from Accidents: Machine Learning for Safety at Railway Stations. IEEE Access, 8, 633–648 (2020) https://doi.org/10.1109/access.2019.2962072 [CrossRef] [Google Scholar]
- N. Attoh-Okine, Big data challenges in railway engineering. 2014 IEEE Int. Conf. on Big Data (Big Data) (2014). https://doi.org/10.1109/bigdata.2014.7004424 [Google Scholar]
- F. Cerreto, B. F. Nielsen, O. A. Nielsen, S. S. Harrod, Application of Data Clustering to Railway Delay Pattern Recognition. J. Adv. Transp., 1–18 (2018) https://doi.org/10.1155/2018/6164534 [CrossRef] [Google Scholar]
- S. M. Famurewa, L. Zhang, M. Asplund, Maintenance analytics for railway infrastructure decision support. J. Qual. Maint. Eng., 23(3), 310–325 (2017) https://doi.org/10.1108/jqme-11-2016-0059 [CrossRef] [Google Scholar]
- W. Hu, W. Wang, C. Ai, J. Wang, W. Wang, X. Meng, J. Liu, H. Tao, S. Qiu, Machine vision-based surface crack analysis for transportation infrastructure. Autom. Constr., 132, 103973 (2021) https://doi.org/10.1016/j.autcon.2021.103973 [CrossRef] [Google Scholar]
- T. Sree Sharmila, R. Srinivasan, K. K. Nagarajan, S. Athithya, Eye Blink Detection Using Back Ground Subtraction and Gradient-Based Corner Detection for Preventing CVS. Procedía Comput. Sci., 165, 781–789 (2019) https://doi.org/10.1016/j.procs.2020.01.011 [CrossRef] [Google Scholar]
- A. Fogelton, W. Benesova, Eye blink detection based on motion vectors analysis. Comput. Vis. Image Underst., 148, 23–33 (2016) https://doi.org/10.1016/j.cviu.2016.03.011 [CrossRef] [Google Scholar]
- A. Taherkhani, G. Cosma, T. M. McGinnity, AdaBoost-CNN: An adaptive boosting algorithm for convolutional neural networks to classify multi-class imbalanced datasets using transfer learning. Neurocomputing, 404, 351–366 (2020) https://doi.org/10.1016/j.neucom.2020.03.064 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.