Open Access
Issue |
E3S Web Conf.
Volume 447, 2023
The 15th of Aceh International Workshop and Expo on Sustainable Tsunami Disaster Recovery (The 15th AIWEST-DR 2023)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 15 | |
Section | Hazard, Technology, and Infrastructure | |
DOI | https://doi.org/10.1051/e3sconf/202344701014 | |
Published online | 13 November 2023 |
- Synolakis, C., & Bernard, E. (2006). Tsunami science before and beyond Boxing Day 2004. Philos. Trans. R. Soc. A, 364, 2231–2265. [CrossRef] [PubMed] [Google Scholar]
- Pelinovsky, E. N. and Poplavsky, A.: Simplified model of tsunami generation by submarine landslides, Phys. Chem. Earth, 21, 13–17, 1996. [CrossRef] [Google Scholar]
- Mori, N., & Takahashi, T. (2012). The 2011 Tohoku Earthquake Tsunami Joint Survey Group (2012) Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami. Coast. Eng., 54, 1–27. [Google Scholar]
- Yalciner, A., Ozer, C., Zaytsev, A., Suppasri, A., Mas, E., Kalligeris, N., Synolakis, C. (2011). Field survey on the coastal impacts of March 11, 2011 Great East Japan Tsunami. In Proceedings of the Seismic Protection of Cultural Heritage. In Proceedings of the Seismic Protection of Cultural Heritage. Turkey: Antalya. [Google Scholar]
- Suppasri, A., Shuto, N., Imamura, F., Koshimura, S., Mas, E., & Yalciner, A. C. (2012). Lessons Learned from the 2011 Great East Japan Tsunami: Performance of Tsunami Countermeasures, Coastal Buildings, and Tsunami Evacuation in Japan. Pure and Applied Geophysics, 994-1018. [Google Scholar]
- Young, Y., Xiao, H., & Maddux, T. (2010). Hydro-and morpho-dynamic modeling of breaking solitary waves over a fine sand beach. Part I: Experimental study. Mar. Geol. 2010, 107–118. [Google Scholar]
- Rasyif, T. M., Saputra, F., Widia, & Akmal. (2020). Simulasi Aliran Dam-Break Menggunakan Program DualSPHysics. Jurnal Telknik Sipil, Vol. 9 No. 2. [Google Scholar]
- Atmika, I. K. (2016). Metode Numerik. Denpasar: Universitas Udayana. [Google Scholar]
- Li, Y., Ma, Y., Deng, R., Jiang, D., & Hub, Z. (2019). Research on dam-break induced tsunami bore acting on the triangular breakwater based on high order 3D CLSVOF-THINC/WLIC-IBM approaching. Ocean Engineering 182, 645–659. [CrossRef] [Google Scholar]
- Benazir, R. Triatmadja, A. P., Yuwono, N., & dkk. (2019). The Behavior Of A Tsunami-Like Wave Produced By Dam Break And Its Run-Up On 1: 20 Slope. Sci. Tsunami Hazards, vol. 38, no. 2. [Google Scholar]
- H. S. A. Chanson, (2000). Experimental Investigations of Wave Runup Downstream of Nappe Impact: Applications toFlood Wave Resulting from Dam Overtopping and Tsunami Wave Runup. Coastal/Ocean Eng. Rep. No. COE00-2. Dept. Archit. Civ. Eng., Toyohashi Univ. Technol. Japan. [Google Scholar]
- H. P. P. L. Lin, (2014). Solitary wave theory and its applications to coastal disaster mitigation. Journal of Marine Science and Technology, vol. 22, no. 2, 147-157. [Google Scholar]
- Altomare, C., Y. X. C. Oshima, Crespo, A. J., & Suzuki, T. (2015). Study of the overtopping flow impacts on multifunctional sea dikes in shallow foreshores with an hybrid numerical model. in 36th IAHR World Congress, 1-11. [Google Scholar]
- Trimulyono, A. (2018). Validasi Gerakan Benda Terapung Menggunakan Metode Smoothed Particle Hydrodynamics. KAPAL, Vol. 15, No. 2 Juni, 38-43. [CrossRef] [Google Scholar]
- Wang, X. (2009). User manual for COMCOT version 1.7 (First Draft). [Google Scholar]
- Ratuluhain, E. S., & Noya, Y. A. (2022). Rekonstruksi Tsunami Mentawai dengan Menggunakan COMCOT v1.7. NEKTON: Jurnal Perikanan dan Ilmu Kelautan, 54-62. [CrossRef] [Google Scholar]
- Al’ala, M. (2015). NUMERICAL SIMULATION OF UJONG SEUDEUN LAND SEPARATION CAUSED BY THE 2004 INDIAN OCEAN TSUNAMI, ACEH-INDONESIA. Tsunami Society International, 159-172. [Google Scholar]
- T. M. Rasyif, “DATA BASE DEVELOPMENT OF ESTIMATED TIME OF,” 2014. [Google Scholar]
- Huang, J. X., Qu, K., Li, X. H., & Lan, G. Y. (2022). Performance Evaluation of Seawalls in Mitigating a Real-World TsunamiWave Using a Nonhydrostatic NumericalWave Model. J. Mar. Sci. Eng. 2022, 10, 796, 1-21. [Google Scholar]
- Hsiao, S.-C., Lin, T.-W. H.-C. Yu-Hsuan. (2008). On the evolution and run-up of breaking solitary waves on a mild sloping beach. Coastal Engineering 55, 975–988. [CrossRef] [Google Scholar]
- Hunt, A., Hall, S. E., & Term, M. (2003). Extreme Waves, Overtopping and Flooding at Sea Defences.A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy at the University of Oxford. Oxford: Department of Engineering Science University of Oxford Parks Road Oxford OX1 3PJ. [Google Scholar]
- Moriasi, D., Liew, M. W., Arnold, J., & Bingner, R. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE (American Society of Agricultural and Biological Engineers), 885-900. [Google Scholar]
- Dang, B.-L., Nguyen-Xuan, H., & Wahab, M. A. (2021). Numerical Study on Wave Forces and Overtopping over various seawall structures using advance SPH-based method. Engineering Structures 226, 226. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.