Open Access
Issue
E3S Web Conf.
Volume 447, 2023
The 15th of Aceh International Workshop and Expo on Sustainable Tsunami Disaster Recovery (The 15th AIWEST-DR 2023)
Article Number 01017
Number of page(s) 9
Section Hazard, Technology, and Infrastructure
DOI https://doi.org/10.1051/e3sconf/202344701017
Published online 13 November 2023
  1. O. Patrikaki, N. Kazakis, I. Kougias, T. Patsialis, N. Theodossiou, and K. Voudouris, “Assessing flood hazard at river basin scale with an index-based approach: The case of mouriki, greece,” Geosci., vol. 8, no. 2, 2018, DOI: 10.3390/geosciences8020050. [CrossRef] [Google Scholar]
  2. C. for R. on the E. of D. CRED, “EM-DAT (The International Disaster DAtabase),” 2022. [Google Scholar]
  3. R. I. Hapsari and M. Zenurianto, “View of Flood Disaster Management in Indonesia and the Key Solutions,” Am. J. Eng. Res., vol. 5, no. 3, pp. 140–151, 2016. [Google Scholar]
  4. A. Díez-Herrero and J. Garrote, “Flood Risk Analysis and Assessment, Applications and Uncertainties: A Bibliometric Review,” Water, vol. 12, no. 7, p. 2050, Jul. 2020, DOI: 10.3390/w12072050. [CrossRef] [Google Scholar]
  5. G. Di Baldassarre, A. Castellarin, A. Montanari, and A. Brath, “Probability- weighted hazard maps for comparing different flood risk management strategies: a case study,” Nat. Hazards, vol. 50, no. 3, pp. 479496, Sep. 2009, DOI: 10.1007/s11069-009-9355-6. [CrossRef] [Google Scholar]
  6. R. B. Mudashiru, N. Sabtu, I. Abustan, and W. Balogun, “Flood hazard mapping methods: A review,” J. Hydrol., vol. 6o3, p. 126846, Dec. 2021, DOI: 10.1016/j.jhydrol.2021.126846. [CrossRef] [Google Scholar]
  7. B. Merz, H. Kreibich, R. Schwarze, and A. Thieken, “Review article "Assessment of economic flood damage",” Nat. Hazards Earth Syst. Sci., vol. 10, no. 8, pp. 1697–1724, Aug. 2010, DOI: 10.5194/nhess-10-1697-2010. [CrossRef] [Google Scholar]
  8. M. Vojtek and J. Vojteková, “Flood Susceptibility Mapping on a National Scale in Slovakia Using the Analytical Hierarchy Process,” Water, vol. 11, no. 2, p. 364, Feb. 2019, DOI: 10.3390/w11020364. [CrossRef] [Google Scholar]
  9. M. R. Amri et al., RBI - Risiko Bencana Indonesia. Jakarta: Direktorat Pengurangan Risiko Bencana BNPB, 2016. [Google Scholar]
  10. S. Manfreda and C. Samela, “A digital elevation model based method for a rapid estimation of flood inundation depth,” J. Flood Risk Manag., vol. 12, no. Suppl. 1, 2009, doi: https://doi.org/10.1111/jfr3.12541. [Google Scholar]
  11. BNPB, “InaRISK.” 2016. [Google Scholar]
  12. S. H. Pourali, C. Arrowsmith, A. Matkan, and D. Mitchel, “Topography Wetness Index Application in Flood-Risk-Based Land Use Planning,” Appl. Spat. Anal. Policy, vol. 9, pp. 39–54, 2016, doi: https://doi.org/10.1007/s12061-014-9130-2. [CrossRef] [Google Scholar]
  13. R. De Risi, F. Jalayer, F. De Paola, and S. Lindley, “Delineation of flooding risk hotspots based on digital elevation model, calculated and historical flooding extents: the case of Ouagadougou,” Stoch. Environ. Res. Risk Assess., vol. 32, no. 6, pp. 1545–1559, 2018, DOI: 10.1007/s00477-017-1450-8. [CrossRef] [Google Scholar]
  14. M. J. Kirkby, “Hydrograph modelling strategies,” in Progress in physical and human geography, R. F. Peel and M. D. Chisholm, Eds. London: Heinemann, 1975, pp. 69-90. [Google Scholar]
  15. G. Kandilioti and C. Makropoulos, “Preliminary flood risk assessment: the case of Athens,” Nat. Hazards, vol. 61, no. 2, pp. 441468, Mar. 2012, DOI: 10.1007/s11069-011-9930-5. [CrossRef] [Google Scholar]
  16. A. Aswandi, R. Sadono, H. Supriyo, and H. Hartono, “KEHILANGAN KARBON AKIBAT DRAINASE DAN DEGRADASI LAHAN GAMBUT TROPIKA DI TRUMON DAN SINGKIL ACEH (Carbon Loss from Drainaged and Degradation of Tropical Peatland in Trumon and Singkil, Aceh),” J. Mns. dan Lingkung., vol. 23, no. 3, p. 334, Feb. 2017, DOI: 10.22146/jml.18807. [CrossRef] [Google Scholar]
  17. N. Kazakis, I. Kougias, and T. Patsialis, “Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope-Evros region, Greece,” Sci. Total Environ., vol. 538, no. December, pp. 555563, 2015, DOI: 10.1016/j.scitotenv.2015.08.055. [CrossRef] [Google Scholar]
  18. N. N. Kourgialas and G. P. Karatzas, “A national scale flood hazard mapping methodology: The case of Greece - Protection and adaptation policy approaches,” Sci. Total Environ., vol. 601-602, pp. 441-452, Dec. 2017, DOI: 10.1016/j.scitotenv.2017.05.197. [CrossRef] [Google Scholar]
  19. N. N. Kourgialas and G. P. Karatzas, “Flood management and a GIS modelling method to assess flood-hazard areas - a case study,” Hydrol. Sci. J., vol. 56, no. 2, pp. 212–225, 2011. [CrossRef] [Google Scholar]
  20. L. Gigović, D. Pamučar, Z. Bajić, and S. Drobnjak, “Application of GIS-Interval Rough AHP Methodology for Flood Hazard Mapping in Urban Areas,” Water, vol. 9, no. 6, p. 360, May 2017, DOI: 10.3390/w9060360. [CrossRef] [Google Scholar]
  21. R. Gentile, C. Galasso, Y. Idris, I. Rusydy, and E. Meilianda, “From rapid visual survey to multi-hazard risk prioritisation and numerical fragility of school buildings,” Nat. Hazards Earth Syst. Sci., vol. 19, no. 7, 2019, DOI: 10.5194/nhess-19-1365-2019. [CrossRef] [Google Scholar]
  22. I. D. Moore, P. E. Gessler, G. A. Nielsen, and G. A. Peterson, “Soil Attribute Prediction Using Terrain Analysis,” Soil Sci. Soc. Am. J., vol. 57, no. 2, pp. 443–452, Mar. 1993, DOI: 10.2136/sssaj1993.03615995005700020026x. [CrossRef] [Google Scholar]
  23. P. Mattivi, F. Franci, A. Lambertini, and G. Bitelli, “TWI computation: a comparison of different open source GISs,” Open Geospatial Data, Softw. Stand., vol. 4, no. 6, 2019, doi: https://doi.org/10.1186/s40965-019-0066-y. [CrossRef] [Google Scholar]
  24. NASA, “Giovanni,” Global Precipitation Measurement, 2022. [Google Scholar]
  25. Geospatial Information Agency (BIG), “DEMNAS,” 2022. [Google Scholar]
  26. C. Palm, P. Sanchez, S. Ahamed, and A. Awiti, “Soils: A Contemporary Perspective,” Annu. Rev. Environ. Resour., vol. 32, no. 1, pp. 99129, Nov. 2007, DOI: 10.1146/annurev.energy.31.020105.100307. [CrossRef] [Google Scholar]
  27. P. Wang and J. J. Feddema, “Linking Global Land Use/Land Cover to Hydrologic Soil Groups From 850 to 2015,” Global Biogeochem. Cycles, vol. 34, no. 3, Mar. 2020, DOI: 10.1029/2019GB006356. [CrossRef] [Google Scholar]
  28. D. Priambodo, E. Suhartanto, and S. Sumiadi, “Analysis of Runoff Curve Number Distribution into Surface Runoff of Lesti Watershed,” Civ. Environ. Sci., vol. 004, no. 01, pp. 062–075, Apr. 2021, DOI: 10.21776/ub.civense.2021.00401.6. [CrossRef] [Google Scholar]
  29. D. Stewart, E. Canfield, and R. Hawkins, “Curve Number Determination Methods and Uncertainty in Hydrologic Soil Groups from Semiarid Watershed Data,” J. Hydrol. Eng., vol. 17, no. 11, pp. 1180–1187, Nov. 2012, DOI: 10.1061/(ASCE)HE.1943-5584.0000452. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.