Open Access
Issue |
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 19 | |
Section | Multidisciplinary | |
DOI | https://doi.org/10.1051/e3sconf/202344801006 | |
Published online | 17 November 2023 |
- Jane Kucera, Reverse Osmosis: Design, Processes, and Applications for Engineers. Wiley-Scrivener, 2015. [Google Scholar]
- A. Giwa and S. W. Hasan, “Novel thermosiphon-powered reverse osmosis: Techno-economic model for renewable energy and freshwater recovery,” Desalination, vol. 435, no. October 2017, pp. 152–160, 2018, doi: 10.1016/j.desal.2017.10.050. [CrossRef] [Google Scholar]
- A. Giwa and A. Dindi, “An investigation of the feasibility of proposed solutions for water sustainability and security in water-stressed environment,” J. Clean. Prod., vol. 165, pp. 721–733, 2017, doi: 10.1016/j.jclepro.2017.07.120. [CrossRef] [Google Scholar]
- A. Giwa, A. Dindi, and J. Kujawa, “Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: Recent developments,” J. Hazard. Mater., vol. 370, no. June 2018, pp. 172–195, 2019, doi: 10.1016/j.jhazmat.2018.06.025. [CrossRef] [Google Scholar]
- “Market Reports | GLOBEFISH - Information and Analysis on World Fish Trade | Food and Agriculture Organization of the United Nations | GLOBEFISH | Food and Agriculture Organization of the United Nations.” https://www.fao.org/in-action/globefish/market-reports/en/ (accessed Aug. 25, 2022). [Google Scholar]
- J. Zhou, V. W. Chang, and A. G. Fane, “Environmental life cycle assessment of reverse osmosis desalination : The fluence of different life cycle impact assessment methods on the characterization results,” DES, vol. 283, pp. 227–236, 2011, doi: 10.1016/j.desal.2011.04.066. [CrossRef] [Google Scholar]
- J. Landaburu-Aguirre, R. García-Pacheco, S. Molina, L. Rodríguez-sáez, J. Rabadán, and E. García-Calvo, “Fouling prevention , preparing for reuse and membrane recycling . Towards circular economy in RO desalination,” DES, 2016, doi: 10.1016/j.desal.2016.04.002. [Google Scholar]
- J. S. Salinas, A. Blanco, R. García-Pacheco, J. Landaburu-Aguirre, and E. García-Calvo, “Prospective Life Cycle Assessment and economic analysis of direct recycling of end-of-life reverse osmosis membranes based on Geographic Information Systems,” J. Clean. Prod., vol. 282, 2021, doi: 10.1016/j.jclepro.2020.124400. [Google Scholar]
- J. Senán-salinas, R. García-pacheco, and J. Landaburu-aguirre, “Resources , Conservation & Recycling Recycling of end-of-life reverse osmosis membranes : Comparative LCA and cost-effectiveness analysis at pilot scale,” Resour. Conserv. Recycl., vol. 150, no. January, p. 104423, 2019, doi: 10.1016/j.resconrec.2019.104423. [CrossRef] [Google Scholar]
- W. Lawler, J. Alvarez-Gaitan, G. Leslie, and P. Le-Clech, “Comparative life cycle assessment of end-of-life options for reverse osmosis membranes,” Desalination, vol. 357, pp. 45–54, Feb. 2015, doi: 10.1016/J.DESAL.2014.10.013. [CrossRef] [Google Scholar]
- M. R. Moradi, A. Pihlajamäki, M. Hesampour, J. Ahlgren, and M. Mänttäri, “End-of-life RO membranes recycling: Reuse as NF membranes by polyelectrolyte layer-by-layer deposition,” J. Memb. Sci., 2019, doi: 10.1016/j.memsci.2019.04.060. [Google Scholar]
- J. Morón-López, L. Nieto-Reyes, J. Senán-Salinas, S. Molina, and R. El-Shehawy, “Recycled desalination membranes as a support material for biofilm development: A new approach for microcystin removal during water treatment,” Sci. Total Environ., vol. 647, pp. 785–793, Jan. 2019, doi: 10.1016/J.SCITOTENV.2018.07.435. [CrossRef] [Google Scholar]
- E. O. Mohamedou, D. B. P. Suarez, F. Vince, P. Jaouen, and M. Pontil, “New lives for old reverse osmosis ( RO ) membranes,” DES, vol. 253, no. 1–3, pp. 62–70, 2010, doi: 10.1016/j.desal.2009.11.032. [CrossRef] [Google Scholar]
- J. J. Rodriguez, V. Jimenez, O. Trujillo, and J. M. Vezab, “Reuse of reverse osmosis membranes in advanced wastewater treatment,” vol. 150, 2002. [Google Scholar]
- P. Taylor, A. Ambrosi, I. C. Tessaro, A. Ambrosi, and I. C. Tessaro, “Separation Science and Technology Study on Potassium Permanganate Chemical Treatment of Discarded Reverse Osmosis Membranes Aiming their Reuse Study on Potassium Permanganate Chemical Treatment of Discarded Reverse Osmosis Membranes Aiming their Reuse,” no. December 2014, pp. 37–41, 2013, doi: 10.1080/01496395.2012.745876. [Google Scholar]
- R. García-pacheco, J. Landaburu-aguirre, and S. Molina, “Transformation of end-of-life RO membranes into NF and UF membranes : Evaluation of membrane performance,” J. Memb. Sci., vol. 495, pp. 305–315, 2015, doi: 10.1016/j.memsci.2015.08.025. [CrossRef] [Google Scholar]
- C. Prince, M. Cran, P. Lecleche, K. Uwe-hoehn, and M. Duke, “REUSE AND RECYLING OF USED DESALINATION MEMBRANES,” no. January, 2011. [Google Scholar]
- W. S. Ang, N. Y. Yip, A. Tiraferri, and M. Elimelech, “Chemical cleaning of RO membranes fouled by wastewater effluent : Achieving higher efficiency with dual-step cleaning,” J. Memb. Sci., vol. 382, no. 1–2, pp. 100–106, 2011, doi: 10.1016/j.memsci.2011.07.047. [CrossRef] [Google Scholar]
- A. Lejarazu-larrañaga, S. Molina, J. Manuel, and R. Navarro, “Circular economy in membrane technology : Using end-of-life reverse osmosis modules for preparation of recycled anion exchange membranes and validation in electrodialysis,” J. Memb. Sci., vol. 593, no. August 2019, p. 117423, 2020, doi: 10.1016/j.memsci.2019.117423. [CrossRef] [Google Scholar]
- S. J. Judd, “Membrane technology costs and me,” Water Res., 2017, doi: 10.1016/j.watres.2017.05.027. [Google Scholar]
- R. García-Pacheco, W. Lawler, J. Landaburu-Aguirre, E. García-Calvo, and P. Le-Clech, “End-of-Life Membranes : Challenges and Opportunities,” Compr. Membr. Sci. Eng. II, vol. 4, 2017, doi: 10.1016/B978-0-12-409547-2.12254-1. [Google Scholar]
- K. P. Lee, T. C. Arnot, and D. Mattia, “A review of reverse osmosis membrane materials for desalination — Development to date and future potential,” J. Memb. Sci., vol. 370, no. 1–2, pp. 1–22, 2011, doi: 10.1016/j.memsci.2010.12.036. [CrossRef] [Google Scholar]
- W. Lawler, A. Antony, M. Cran, M. Duke, G. Leslie, and P. Le-clench, “Production and characterization of UF membranes by chemical conversion of used RO membranes,” J. Memb. Sci., vol. 447, pp. 203–211, 2013, doi: 10.1016/j.memsci.2013.07.015. [CrossRef] [Google Scholar]
- K. Kogutid and B. Kunst, “RO and NF membrane fouling and cleaning and pore size distribution variations,” Desalination, vol. 150, pp. 113–120, 2002. [CrossRef] [Google Scholar]
- F. Tang, H. Hu, L. Sun, Q. Wu, and Y. Jiang, “Fouling of reverse osmosis membrane for municipal wastewater reclamation : Autopsy results from a full-scale plant,” DES, vol. 349, pp. 73–79, 2014, doi: 10.1016/j.desal.2014.06.018. [CrossRef] [Google Scholar]
- S. M. K. Sadr and D. P. Saroj, 14 - Membrane technologies for municipal wastewater treatment. Elsevier Ltd, 2015. doi: 10.1016/B978-1-78242-121-4.00014-9. [Google Scholar]
- A. Al-amoudi and R. W. Lovitt, “Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency,” vol. 303, pp. 4–28, 2007, doi: 10.1016/j.memsci.2007.06.002. [Google Scholar]
- Q. Li and M. Elimelech, “Organic Fouling and Chemical Cleaning of Nanofiltration Membranes : Measurements and Mechanisms,” Environ. Sci. Technol, vol. 38, no. 17, pp. 4683–4693, 2004. [CrossRef] [PubMed] [Google Scholar]
- P. Taylor, D. Zhao, and S. Yu, “A review of recent advance in fouling mitigation of NF / RO membranes in water treatment : pretreatment, membrane modification , and chemical cleaning,” Desalin. Water Treat., no. December, pp. 37–41, 2014, doi: 10.1080/19443994.2014.928804. [Google Scholar]
- P. Taylor, N. M. D. Souza, and A. J. Mawson, “Membrane Cleaning in the Dairy Industry : A Review Membrane,” Crit. Rev. Food Sci. Nutr., no. February 2014, pp. 37–41, 2007, doi: 10.1080/10408690490911783. [Google Scholar]
- E. C. De Paula, M. Cristina, and S. Amaral, “Extending the life-cycle of reverse osmosis membranes : A review,” Waste Manag. Res., vol. 35, no. 5, pp. 456–470, 2017, doi: 10.1177/0734242X16684383. [CrossRef] [PubMed] [Google Scholar]
- S. Lee and M. Elimelech, “Salt cleaning of organic-fouled reverse osmosis membranes,” vol. 41, pp. 1134–1142, 2007, doi: 10.1016/j.watres.2006.11.043. [Google Scholar]
- A. Matin, Z. Khan, S. M. J. Zaidi, and M. C. Boyce, “Biofouling in reverse osmosis membranes for seawater desalination : Phenomena and prevention,” Desalination, vol. 281, pp. 1–16, 2011, doi: 10.1016/j.desal.2011.06.063. [CrossRef] [Google Scholar]
- A. Al-amoudi and A. Al-amoudi, “Nanofiltration membrane cleaning characterization Nanofiltration membrane cleaning characterization,” Desalin. Water Treat., vol. 3994, no. October, 2015, doi: 10.1080/19443994.2014.940640. [Google Scholar]
- A. Al-amoudi, P. Williams, S. Mandale, and R. W. Lovitt, “Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability,” Sep. Purif. Technol., vol. 54, pp. 234–240, 2007, doi: 10.1016/j.seppur.2006.09.014. [CrossRef] [Google Scholar]
- A. Simon, W. E. Price, and L. D. Nghiem, “Influence of formulated chemical cleaning reagents on the surface properties and separation efficiency of nanofiltration membranes,” J. Memb. Sci., vol. 432, pp. 73–82, 2013, doi: 10.1016/j.memsci.2012.12.029. [CrossRef] [Google Scholar]
- A. Simon, W. E. Price, and L. D. Nghiem, “Changes in surface properties and separation efficiency of a nanofiltration membrane after repeated fouling and chemical cleaning cycles,” Sep. Purif. Technol., vol. 113, pp. 42–50, 2013, doi: 10.1016/j.seppur.2013.04.011. [CrossRef] [Google Scholar]
- A. Simon, J. A. Mcdonald, and W. E. Price, “Effects of caustic cleaning on pore size of nanofiltration membranes and their rejection of trace organic chemicals,” J. Memb. Sci., vol. 447, pp. 153–162, 2013. [CrossRef] [Google Scholar]
- W. S. Ang, A. Tiraferri, K. L. Chen, and M. Elimelech, “Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent,” J. Memb. Sci., vol. 376, no. 1–2, pp. 196–206, 2011, doi: 10.1016/j.memsci.2011.04.020. [CrossRef] [Google Scholar]
- DOW, Water & Process Solutions FILMTEC TM Reverse Osmosis Membranes Technical Manual. 2023. [Google Scholar]
- T. Yu, L. Meng, Q. Zhao, Y. Shi, H. Hu, and Y. Lu, “Effects of chemical cleaning on RO membrane inorganic , organic and microbial foulant removal in a full-scale plant for municipal wastewater reclamation,” Water Res., vol. 113, pp. 1–10, 2017, doi: 10.1016/j.watres.2017.01.068. [CrossRef] [Google Scholar]
- X. Li, Z. Wang, X. Han, Y. Liu, C. Wang, and F. Yan, “Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes : A review,” J. Memb. Sci., vol. 640, no. April, 2021, doi: 10.1016/j.memsci.2021.119765. [Google Scholar]
- L. E. Peng, Z. Yang, L. Long, S. Zhou, H. Guo, and C. Y. Tang, “A critical review on porous substrates of TFC polyamide membranes : Mechanisms , membrane performances , and future perspectives,” J. Memb. Sci., vol. 641, no. May 2021, p. 119871, 2022, doi: 10.1016/j.memsci.2021.119871. [CrossRef] [Google Scholar]
- J. Benavente and M. I. Vázquez, “Effect of age and chemical treatments on characteristic parameters for active and porous sublayers of polymeric composite membranes,” J. ofColloid Interface Sci., vol. 273, pp. 547–555, 2004, doi: 10.1016/j.jcis.2003.11.023. [CrossRef] [Google Scholar]
- M. Nilsson, G. Tr, and K. Ostergren, “Influence of temperature and cleaning on aromatic and semi-aromatic polyamide thin-film composite NF and RO membranes,” Sep. Purif. Technol., vol. 62, pp. 717–726, 2008, doi: 10.1016/j.seppur.2008.03.014. [CrossRef] [Google Scholar]
- G. M. Geise et al., “Water Purification by Membranes : The Role of Polymer Science,” J. Polym. Sci. Part B, vol. 48, pp. 1685–1718, 2010, doi: 10.1002/POLB. [CrossRef] [Google Scholar]
- E. C. De Paula, J. Célia, L. Gomes, M. Cristina, and S. Amaral, “Recycling of end-of-life reverse osmosis membranes by oxidative treatment: a technical evaluation,” Water Sci. Technol., no. ii, pp. 1–18, 2017, doi: 10.2166/wst.2017.238. [Google Scholar]
- Y. siew Khoo, W. J. Lau, S. W. Hasan, W. Norhayati, W. Salleh, and A. Ismail Fauzi, “New approach of recycling end-of-life reverse osmosis membranes via sonication for microfiltration process,” J. Environ. Chem. Eng., vol. 9, no. 6, p. 106731, 2021, doi: 10.1016/j.jece.2021.106731. [CrossRef] [Google Scholar]
- A. Antony, R. Fudianto, S. Cox, and G. Leslie, “Assessing the oxidative degradation of polyamide reverse osmosis membrane — Accelerated aging with hypochlorite exposure,” J. ofMembrane Sci. J., vol. 347, pp. 159–164, 2010, doi: 10.1016/j.memsci.2009.10.018. [CrossRef] [Google Scholar]
- R. García-pacheco, J. Landaburu-aguirre, and A. Lejarazu-larrañaga, “Free chlorine exposure dose ( ppm · h ) and its impact on RO membranes aging and recycling potential,” Desalination, vol. 457, no. January, pp. 133–143, 2019, doi: 10.1016/j.desal.2019.01.030. [CrossRef] [Google Scholar]
- A. Yusuf et al., “A review of emerging trends in membrane science and technology for sustainable water treatment,” J. Clean. Prod., p. 121867, 2020, doi: 10.1016/j.jclepro.2020.121867. [Google Scholar]
- A. Ettori, E. Gaudichet-Maurin, J. Schrotter, P. Aimar, and C. Causserand, “Permeability and chemical analysis of aromatic polyamide based membranes exposed to sodium hypochlorite,” J. Memb. Sci., vol. 375, no. 1–2, pp. 220–230, 2011, doi: 10.1016/j.memsci.2011.03.044. [CrossRef] [Google Scholar]
- B. C. Donose, S. Sukumar, M. Pidou, Y. Poussade, J. Keller, and W. Gernjak, “Effect of pH on the aging of reverse osmosis membranes upon exposure to hypochlorite,” DES, vol. 309, pp. 97–105, 2013, doi: 10.1016/j.desal.2012.09.027. [CrossRef] [Google Scholar]
- B. Govardhan, S. Fatima, and M. M. S. Sridhar, “Modification of used commercial reverse osmosis membranes to nanofiltration modules for the production of mineral-rich packaged drinking water,” Appl. Water Sci., vol. 10, no. 11, pp. 1–17, 2020, doi: 10.1007/s13201-020-01312-1. [CrossRef] [Google Scholar]
- R. Habte, Y. Chul, M. Mezemir, B. Chul, K. Park, and J. Choi, “Reverse osmosis membrane fabrication and modification technologies and future trends : A review,” Adv. Colloid Interface Sci., vol. 276, p. 102100, 2020, doi: 10.1016/j.cis.2019.102100. [CrossRef] [Google Scholar]
- B. P. Espinasse et al., “Comparison of chemical cleaning reagents and characterization of foulants of nanofiltration membranes used in surface water treatment,” DES, vol. 296, pp. 1–6, 2012, doi: 10.1016/j.desal.2012.03.016. [CrossRef] [Google Scholar]
- M. Asadollahi, D. Bastani, and S. A. Musavi, “Enhancement of surface properties and performance of reverse osmosis membranes after surface modification : A review,” Desalination, no. April, pp. 1–54, 2017, doi: 10.1016/j.desal.2017.05.027. [Google Scholar]
- W. Lawler et al., “Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes,” DES, vol. 299, pp. 103–112, 2012, doi: 10.1016/j.desal.2012.05.030. [CrossRef] [Google Scholar]
- M. Pontié, “Old RO membranes: solutions for reuse,” Desalin. Water Treat., vol. 53, no. 6, pp. 1492–1498, 2015, doi: 10.1080/19443994.2014.943060. [CrossRef] [Google Scholar]
- G. Piemavieja, J. M. Veza, and J. M. Padrn, “Experience in desalination training and know-how in the Canary Islands,” Desalination, vol. 141, pp. 205–208, 2001. [CrossRef] [Google Scholar]
- R. García-Pacheco et al., “Validation of recycled membranes for treating brackish water at pilot scale,” Desalination, no. June, pp. 0–1, 2017, doi: 10.1016/j.desal.2017.12.034. [Google Scholar]
- X. Zheng, Y. Chen, L. Zheng, R. Cheng, and H. Hua, “Recycling of aged RO membranes as NF/UF membranes: Biosafety evaluation and aging process,” Desalination, vol. 538, no. June, p. 115845, 2022, doi: 10.1016/j.desal.2022.115845. [CrossRef] [Google Scholar]
- A. Ettori, E. Gaudichet-Maurin, P. Aimar, and C. Causserand, “Pilot-scale study of chlorination-induced transport property changes of a seawater reverse osmosis membrane,” Desalination, vol. 311, pp. 24–30, 2013, doi: 10.1016/j.desal.2012.11.004. [CrossRef] [Google Scholar]
- P. Taylor, A. F. Ismail, and W. J. Lau, “Influence of feed conditions on the rejection of salt and dye in aqueous solution by different characteristics of hollow fiber nanofiltration membranes,” Desalin. Water Treat., vol. 6, no. August 2015, pp. 281–288, 2009, doi 10.5004/dwt.2009.479. [CrossRef] [Google Scholar]
- J. M. Gohil and A. K. Suresh, “Chlorine attack on reverse osmosis membranes : Mechanisms and mitigation strategies,” J. Memb. Sci., vol. 541, no. March, pp. 108–126, 2017, doi: 10.1016/j.memsci.2017.06.092. [CrossRef] [Google Scholar]
- J. M. Veza and J. J. Rodriguez-Gonzalez, “Second use for old reverse osmosis membranes : wastewater treatment,” Desalination, vol. 157, no. May, pp. 65–72, 2003. [CrossRef] [Google Scholar]
- S. M. Martínez et al., “TRANSFORMATION OF END-OF-LIFE RO MEMBRANE INTO RECYCLED NF AND UF MEMBRANES , SURFACE CHARACTERIZATION,” in The International Desalination Association World Congress on Desalination and Water Reuse, 2015, no. September, pp. 1–18. [Google Scholar]
- J. Senán-salinas, R. García-pacheco, and J. Landaburu-aguirre, “Resources , Conservation & Recycling Recycling of end-of-life reverse osmosis membranes : Comparative LCA and cost-effectiveness analysis at pilot scale,” Resour. Conserv. Recycl., vol. 150, no. July, p. 104423, 2019, doi: 10.1016/j.resconrec.2019.104423. [CrossRef] [Google Scholar]
- S. Dong et al., “Enhancing effect of Platymonas addition on water quality, microbial community diversity and shrimp performance in biofloc-based tanks for Penaeus vannamei nursery,” Aquaculture, vol. 554, no. February, 2022, doi: 10.1016/j.aquaculture.2022.738057. [CrossRef] [Google Scholar]
- M. Pype, B. C. Donose, L. Martí, D. Patureau, N. Wery, and W. Gernjak, “Virus removal and integrity in aged RO membranes,” Water Res., vol. 90, pp. 167–175, 2016, doi: 10.1016/j.watres.2015.12.023. [CrossRef] [Google Scholar]
- H. Wang, D. Ma, W. Shi, Z. Yang, Y. Cai, and B. Gao, “Formation of disinfection by-products during sodium hypochlorite cleaning of fouled membranes from membrane bioreactors,” Front. Environ. Sci. Eng, vol. 15, no. 5, 2021. [Google Scholar]
- S. Torii, T. Hashimoto, A. Thuan, H. Furumai, and H. Katayama, “Repeated pressurization as a potential cause of deterioration in virus removal by aged reverse osmosis membrane used in households,” Sci. Total Environ., vol. 695, p. 133814, 2019, doi: 10.1016/j.scitotenv.2019.133814. [CrossRef] [Google Scholar]
- Z. C. Ng et al., “Reuse potential of spent RO membrane for NF and UF process Buy article PDF,” Membr. Water Treat., vol. 11, no. 5, pp. 323–331, 2020. [Google Scholar]
- H. D. Raval, V. R. Chauhan, A. H. Raval, and S. Mishra, “Rejuvenation of discarded RO membrane for new applications,” Desalin. Water Treat., vol. 48, no. November 2014, pp. 349–359, 2012, doi: 10.1080/19443994.2012.704727. [CrossRef] [Google Scholar]
- Y. Choi, S. Kim, S. Jeong, and T. Hwang, “Application of ultrasound to mitigate calcium sulfate scaling and colloidal fouling,” DES, vol. 336, pp. 153–159, 2014, doi: 10.1016/j.desal.2013.10.011. [CrossRef] [Google Scholar]
- N. C. Nguyen, H. T. Nguyen, S.-S. Chen, N. T. Nguyen, and C.-W. Li, “Application of forward osmosis ( FO ) under ultrasonication on sludge thickening of waste activated sludge Nguyen Cong Nguyen , Hau Thi Nguyen , Shiao-Shing Chen , Nhat Thien Nguyen and Chi-Wang Li,” Water Sci. Technol., vol. 72, no. 8, pp. 1301–1307, 2015, doi: 10.2166/wst.2015.341. [CrossRef] [PubMed] [Google Scholar]
- A. V Mohod and P. R. Gogate, “Ultrasonics Sonochemistry Ultrasonic degradation of polymers : Effect of operating parameters and intensification using additives for carboxymethyl cellulose ( CMC ) and polyvinyl alcohol ( PVA ),” Ultrason. - Sonochemistry, vol. 18, no. 3, pp. 727–734, 2011, doi: 10.1016/j.ultsonch.2010.11.002. [CrossRef] [Google Scholar]
- J. O. S. M. J. Paulusse and R. P. Sijbesma, “Ultrasound in Polymer Chemistry : Revival of an Established Technique,” Wiley Intersci., vol. 44, pp. 5445–5453, 2006, doi: 10.1002/pola. [Google Scholar]
- N. V Thombre, A. P. Gadhekar, A. V Patwardhan, and P. R. Gogate, “Ultrasonics - Sonochemistry Ultrasound induced cleaning of polymeric nanofiltration membranes,” Ultrason. - Sonochemistry, vol. 62, no. July 2019, p. 104891, 2020, doi: 10.1016/j.ultsonch.2019.104891. [CrossRef] [Google Scholar]
- V. T. Do, C. Y. Tang, M. Reinhard, and J. O. Leckie, “Effects of hypochlorous acid exposure on the rejection of salt , polyethylene glycols , boron and arsenic ( V ) by nanofiltration and reverse osmosis membranes,” Water Res., vol. 46, no. 16, pp. 5217–5223, 2012, doi: 10.1016/j.watres.2012.06.044. [CrossRef] [Google Scholar]
- V. T. Do, C. Y. Tang, M. Reinhard, and J. O. Leckie, “Degradation of Polyamide Nanofiltration and Reverse Osmosis Membranes by Hypochlorite,” Environ. Sci. Technol., vol. 46, pp. 852–859, 2012. [CrossRef] [PubMed] [Google Scholar]
- J. Contreras-Martínez et al., “Recycled reverse osmosis membranes for forward osmosis technology,” Desalination, vol. 519, no. July 2021, 2022, doi: 10.1016/j.desal.2021.115312. [Google Scholar]
- T. Chung, L. Luo, C. Feng, Y. Cui, and G. Amy, “What is next for forward osmosis ( FO ) and pressure retarded osmosis ( PRO ) q,” Sep. Purif. Technol., vol. 156, pp. 856–860, 2015, doi: 10.1016/j.seppur.2015.10.063. [CrossRef] [Google Scholar]
- N. Akther, A. Sodiq, A. Giwa, S. Daer, H. A. Arafat, and S. W. Hasan, “Recent advancements in forward osmosis desalination : A review,” Chem. Eng. J., vol. 281, pp. 502–522, 2015, doi: 10.1016/j.cej.2015.05.080. [CrossRef] [Google Scholar]
- K. Lutchmiah, A. R. D. Verliefde, K. Roest, and L. C. Rietveld, “ScienceDirect Forward osmosis for application in wastewater treatment : A review,” Water Res., vol. 58, no. 0, pp. 179–197, 2014, doi: 10.1016/j.watres.2014.03.045. [CrossRef] [Google Scholar]
- H. Buk, J. Korenak, H. Claus, and I. Petrini, “Ef fi ciency and economic feasibility of forward osmosis in textile wastewater treatment,” J. Clean. Prod., vol. 210, pp. 1483–1495, 2019, doi: 10.1016/j.jclepro.2018.11.130. [CrossRef] [Google Scholar]
- T. Y. Cath, A. E. Childress, and M. Elimelech, “Forward osmosis : Principles , applications , and recent developments,” J. Memb. Sci., vol. 281, pp. 70–87, 2006, doi: 10.1016/j.memsci.2006.05.048. [CrossRef] [Google Scholar]
- J. Moron-Lopez, L. Nieto-Reyes, S. Aguado, R. El-Shehawy, and S. Molina, “Recycling of end-of-life reverse osmosis membranes for membrane bio fi lms reactors ( MBfRs ). Effect of chlorination on the membrane surface and gas permeability .” Chemosphere, vol. 231, pp. 103–112, 2019, doi: 10.1016/j.chemosphere.2019.05.108. [CrossRef] [PubMed] [Google Scholar]
- K. J. Martin, J. P. Boltz, F. Hall, and N. Dame, “The Membrane Biofilm Reactor ( MBfR ) for Wastewater Treatment : Applications , Design Considerations , and Technology Outlook,” pp. 4032–4044, 2012. [Google Scholar]
- T. Li, J. Liu, and R. Bai, “Membrane Aerated Biofilm Reactors : A Brief Current Review,” 88 Recent Patents Biotechnol., vol. 2, pp. 88–93, 2008. [CrossRef] [Google Scholar]
- K. J. Martin and R. Nerenberg, “Bioresource Technology The membrane biofilm reactor ( MBfR ) for water and wastewater treatment : Principles , applications , and recent developments,” Bioresour. Technol., vol. 122, pp. 83–94, 2012, doi: 10.1016/j.biortech.2012.02.110. [CrossRef] [Google Scholar]
- E. Syron and E. Casey, “Critical Review Membrane-Aerated Biofilms for High Rate Biotreatment : Performance Appraisal , Engineering Principles , Scale-up , and Development Requirements,” Environ. Sci. Technol., vol. 42, no. 6, pp. 1833–1844, 2008. [CrossRef] [PubMed] [Google Scholar]
- C. Zhou, A. Ontiveros-valencia, R. Nerenberg, Y. Tang, and C. Zhou, “Hydrogenotrophic Microbial Reduction of Oxyanions With the Membrane Biofilm Reactor,” vol. 9, no. January, pp. 1–14, 2019, doi: 10.3389/fmicb.2018.03268. [Google Scholar]
- B. H. de L. Silva and M. A. B. de Melo, “Trihalometanos em água potável e riscos de câncer: Simulação usando potencial de interação e transformações de Bäcklund (Trihalomethanes in drinking water and cancer risk: Simulation using potential interactions and transformations Backlund),” Quim Nov., vol. 38, no. 3, pp. 309–315, 2015. [Google Scholar]
- A. Hedir, M. Moudoud, O. Lamrous, S. Rondot, O. Jbara, and P. Dony, “Ultraviolet radiation aging impact on physicochemical properties of crosslinked polyethylene cable insulation,” J. Appl. Polym. Sci., vol. 137, no. 16, pp. 1–9, 2020, doi: 10.1002/app.48575. [Google Scholar]
- Y. Wu, Z. Chen, X. Li, Y. Wang, B. Liu, and G. Chen, “Effect of ultraviolet disinfection on the fouling of reverse osmosis membranes for municipal wastewater reclamation,” Water Res., vol. 195, 2021, doi: 10.1016/j.watres.2021.116995. [Google Scholar]
- R. Mao, M. Lang, X. Yu, R. Wu, X. Yang, and X. Guo, “Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals,” J. Hazard. Mater., vol. 393, no. December 2019, p. 122515, 2020, doi: 10.1016/j.jhazmat.2020.122515. [CrossRef] [Google Scholar]
- H. Fravel and K. Lindsey, “Understanding Salt Solubility Reaps Benefits In RO System Performance,” Water Online, 2014. https://www.wateronline.com/doc/understanding-salt-solubility-reaps-benefits-in-ro-system-performance-0001 [Google Scholar]
- J. Zhang, K. Northcott, M. Duke, P. Scales, and S. R. Gray, “In fl uence of pretreatment combinations on RO membrane fouling,” Desalination, vol. 393, pp. 120–126, 2016, doi: 10.1016/j.desal.2016.02.020. [CrossRef] [Google Scholar]
- X. Chen, T. Li, X. Dou, L. Meng, and S. Xu, “Reverse Osmosis Membrane Combined with Ultrasonic Cleaning for Flue Gas Desulfurization Wastewater Treatment,” Water, vol. 14, no. 875, pp. 1–13, 2022. [Google Scholar]
- T. Nguyen, F. A. Roddick, and L. Fan, “Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures,” Membranes (Basel)., vol. 2, pp. 804–840, 2012, doi: 10.3390/membranes2040804. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.